
Solutions for the exam in Optimization.
wednesday March 14, 2012, time. 14.00–19.00

Instructor: Per Enqvist, tel. 790 62 98

There may be alternative solutions to the problem.

1. (a) Introduce the variable xik which is one if person i is seated at table k and zero
otherwise.

The total utility is then
∑18

i=1

∑3
k=1 xikuik.

Every person should be seated so
∑3

k=1 xik = 1 for i = 1, · · · , 18.

At every table there should be six persons so
∑18

i=1 xik = 6 for k = 1, · · · , 3.

The binary character of the variables can be relaxed and we consider the fol-
lowing problem with non-negative real variables:

(TP )


min
x

∑18
i=1

∑3
k=1 xikuik

s.t. ∑3
k=1 xik = 1, i = 1, · · · , 18,∑18
i=1 xik = 6, k = 1, · · · , 3.

x ≥ 0


The problem can be seen as a transportation problem and can be solved using
the specialized algorithm.

(b) The feasible region of the problem (P) can be described by the figure below.
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So the feasible directions are vectors d = (1, α), where α ∈ (0, 1), or vectors βd,
where β > 0.

The gradient of the objective function is cT and is described by the arrow in
the figure below. Descent directions d are directions such that f(x+ td) < f(x)
for t > 0 small enough. In this linear case d must satisfy cTd < 0, and vectors
that satisfy this form an angle larger than 90 degrees to the vector c, i.e. lies
to the right under the blue line in the figure below.
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The feasible descent directions are those vectors that lie in the yellow cone in
the figure above, i.e. vectors d = (1, α), where α ∈ (1/2, 1), or vectors βd, where
β > 0. The optimum is x̂ = (1, 1), and since the problem is convex there exists
at every feasible point a feasible descent direction that points to the optimum,
in particular d = (1, 1) is a feasible descent direction at x∗ pointing to x̂.

(c) We should show that cTx− bT y ≥ 0.

Now, using that x is feasible, then b = Ax, and

cTx− bT y = cTx− (Ax)T y = xT c− xTAT y = xT︸︷︷︸
≥0

(c−AT y)︸ ︷︷ ︸
≥0

≥ 0

follows since x ≥ 0 by primal feasibility and c−AT y ≥ 0 due to dual feasibility
and the last inequality follows since we multiply two vectors which both have
only positive elements.
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2. (a) The standard form is

(Ps)

 min
x

cTx

s.t. Ax = b
x ≥ 0


Define the vector x = (x12 x13 x21 x32), then c = (2 1 − 1 2)T . The Adjacency
matrix is

Ã =

 1 1 −1 0
−1 0 1 −1

0 −1 0 1

 , b̃ =

 10
−5
−5


but since there are linearly dependent rows we can eliminate the last one to get

A =

[
1 1 −1 0
−1 0 1 −1

]
, b =

[
10
−5

]
(b) The given flow is x = (0 10 0 5), so x13 and x32 are the basic variables corre-

sponding to a spanning tree in the graph.

Put the node potential y3 at node 3 to be 0. Then y1 − y3 = c13 gives y1 = 1.
Then y3 − y2 = c32 gives y2 = −2.

The reduced costs are now r12 = c12−y1 +y3 = −1 and r21 = c21−y2 +y1 = 2.
Since the reduced cost r12 is negative the flow in x12 should be increased.
Increasing the flow in x12 to t a cycle in the graph is created and we must
compensate to get x32 = 5 − t and x13 = 10 − t. So t can become at most 5
and then x32 becomes zero and exits the basis.

In the new flow x = (5 5 0 0), so x13 and x12 are the basic variables correspond-
ing to a spanning tree in the graph.

Put the node potential y3 at node 3 to be 0. Then y1 − y2 = c12 gives y1 = 1.
Then y1 − y3 = c13 gives y2 = −1.

The reduced costs are now r21 = c21 − y2 + y1 = 1 and r32 = c32 − y3 + y2 = 1.
Since the reduced costs are positive the flow is optimal.

(c) The dual problem (D) can be written

(D)

 max
x

bT y

s.t. AT y ≤ c
y free


which explicitly amounts to

(D)


max
x

10y1 − 5y2

s.t. y1 − y2 ≤ 2
y1 ≤ 1
−y1 + y2 ≤ −1
y1, y2 free


The optimal solution is given by the previous part , the node potentials y1 = 1
and y2 = −1.

Complementarity:
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Let s = Ax − b = (0 0)T and r = AT y − c = (0 0 − 1 − 1) then sT y = 0 and
rTx = 0 should hold. The first holds since s = 0 and the second holds since
the last two variables in x are zero since they are non-basic variables and the
first two elements in r are zero.

3. (a) For f to be convex on the whole R3 it is necessary that the matrix H is positive
semidefinite. Use LDLT -factorization:

H =

 1 0 0
1 1 0
2 2 1

 1 0 0
0 1 0
0 0 −4

 1 1 2
0 1 2
0 0 1

 .
2 Since the last diagonal elements in the D-matrix is negative, the matrix H is
not positive semi-definite and the function is not convex on R3.

(b) Use Gauss-Jordan to determine a basis for the nullspace of A. With the
nullspace method a Z-matrix and x̄ given by

Z =

 −1
1
3

 , x̄ =

 0
0

1/2

 ,
the equation system (ZHZT )v = −ZT (Hx̄+ c):[

49
]
v = −

[
7
]
,

yields v = [−1/7]. Therefore, x̂ = x̄ + Zv = [1/7 − 1/7 1/14]T is a global
minimum since the problem is convex.

(c) The gradient of f is given by ∇f(x∗)T = Hx∗ + c = 22/7(1 1 0) and then
applying row operations on 2 −4 2

6 0 2
22/7 22/7 0

 ⇒

 2 −4 2
4 4 0
1 1 0


(subtracting the first row from the second and multiplying the last with 7/22)
we see that the last two rows are linearly dependent.

It is not a coincidence since ∇f(x∗) + λT∇h(x∗) should hold at an optimal
solution from the Lagrange conditions and ∇h(x∗) = A.

4. (a) For the optimization problem to be convex, it is necessary that the feasible
region is convex and that the objective function is convex on the whole feasible
region.

The objective function is convex since it is a linear function. The first two
constraints are determined by convex functions g1(x, y, z) = x2 + 4y2 − 1 ≤ 0
and g2(x, y, z) = x + z ≤ 0, but the third one g3(x, y, z) = xyz ≤ 0 does
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not determine a convex region. We note that (x, y, z) = (1/2, 1/10,−1) and
(x̄, ȳ, z̄) = (−1/4,−2/10,−1/4) are feasible, but

1

2
(x, y, z)+

1

2
(x̄, ȳ, z̄) =

1

2
(1/2, 1/10,−1)+

1

2
(−1/4,−2/10,−1/4) = (1/8,−1/20,−5/8)

is not feasible since it does not satisfy the third constraint.

It is not a convex optimization problem, since the constraints does not form a
convex feasible set.

(b) The gradients are given by

∇f(x) =
[
−2 2 −1

]
, ∇g1(x) =

[
2x 8y 0

]
, ∇g2(x) =

[
1 0 1

]
.

Since constraint 3 is not active, KKT4 tells us that y3 = 0 must hold. Then
KKT1 becomes

∇f(x)+y1∇g1(x)+y2∇g2(x) =
[
−2 2 −1

]
+y1

[
2x 8y 0

]
+y2

[
1 0 1

]
= 0,

which tells us that y2 = 1 and xy1 = 1/2 and yy1 = −1/4. Clearly x 6= 0 and
y 6= 0, and then x̂ = 1

2y1
and ŷ = − 1

4y1
.

We know that g1(x̂, ŷ, ẑ) = x̂2 + 4ŷ2 − 1 = 1
4y21

+ 4 1
42y22
− 1 = 0, which tells us

that y1 = ± 1√
2

and from KKT3 we must have y1 = 1√
2
. Then x̂ = 1√

2
and

ŷ = − 1
2
√
2
.

We know that g2(x̂, ŷ, ẑ) = x̂+ ẑ = 0, so ẑ = − 1√
2
.

The point (x̂, ŷ, ẑ) = ( 1√
2
,− 1

2
√
2
,− 1√

2
) does not satsify g3(x̂, ŷ, ẑ) < 0, so it does

not satisfy all the KKT conditions and could not be a local minimum to the
problem since the point is regular - the two active constraints are not linearly
dependent.

5. (a) For the optimization problem to be convex, it is necessary that the feasible
region is convex and that the objective function is convex on the whole feasible
region.

The constraints are linear inequality constraints in pi and therefore they form
a convex feasible set.

The objective function is a sum of functions of the form fi(pi) and the functions
fi are two times differentiable for positive values of pi. Since, f ′i(pi) = 1+log pi
and f ′′i (pi) = 1

pi
> 0 for positive pi the functions fi are convex and there sum

is also convex.

So (P ) is a convex optimization problem.

(b) Introduce the Lagrange function

L(p, y) =
n∑

i=1

pi log pi+y1

(
n∑

i=1

pi − 1

)
+y2

(
n∑

i=1

ipi − µ

)
+y3

(
n∑

i=1

(i− µ)2pi − σ2
)

i.e.

L(p, y) =
n∑

i=1

(
pi log pi + y1pi + y2ipi + y3(i− µ)2pi

)
− y1 − µy2 − σ2y3,
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where we assume that the variables y1, y2, y3 are non-negative.

We note that minimizing L(p, y) over pi for fixed y we can minimize the sum
term-by-term, i.e. for each pi individually.

The function li(pi) = pi log pi + y1pi + y2ipi + y3(i−µ)2pi is convex for positive
pi, and the derivative l′i(pi) = 1 + log pi + y1 + y2i+ y3(i− µ)2 = 0 for p̂i(y) =
exp−1− y1 + y2i+ y3(i− µ)2 which will be the minimum of L(p, y). Note
that the “probabilities” pi are always non-negative for any choice of y, and the
optimal y is determined by solving the dual optimization problem.

Let ϕ(y) := L(p̂(y), y), which will be

L(p̂(y), y) =
n∑

i=1

(
exp{−1− (y1 + y2i+ y3(i− µ)2)}

[
−1− (y1 + y2i+ y3(i− µ)2)

]
+. . .

+(y1 + y2i+ y3(i− µ)2) exp{−1− (y1 + y2i+ y3(i− µ)2)}
)
−y1−µy2−σ2y3,

i.e.

ϕ(y) = L(p̂(y), y) = −
n∑

i=1

exp{−1− (y1 + y2i+ y3(i− µ)2)} − y1 − µy2 − σ2y3,

The dual optimization problem is

(D)

[
max
y

ϕ(y)

s.t. y ≥ 0.

]

(c) If there is a point ŷ such that the gradient of the dual is zero then

1. the derivative w.r.t. y1 equal to zero say that

n∑
i=1

exp{−1− (ŷ1 + ŷ2i+ ŷ3(i− µ)2)} − 1 = 0

i.e. constraint one in the primal (P) with pi(ŷ) is satisfied with equality.

2. the derivative w.r.t. y2 equal to zero say that

n∑
i=1

i exp{−1− (ŷ1 + ŷ2i+ ŷ3(i− µ)2)} − µ = 0

i.e. constraint two in the primal (P) with pi(ŷ) is satisfied with equality.

3. the derivative w.r.t. y3 equal to zero say that

n∑
i=1

(i− µ)2 exp{−1− (ŷ1 + ŷ2i+ ŷ3(i− µ)2)} − σ2 = 0

i.e. constraint three in the primal (P) with pi(ŷ) is satisfied with equality.

For continuous stochastic variables, where sums are replaced by integrals, this
is used to show that the Normal distribution maximizes the entropy.


