
Solutions to exam in SF1811 Optimization, August 18, 2014

1.(a)

The considered LP problem is a minimum cost network flow problem with three nodes:
1, 2 and 3, and six arcs: (1,2), (2,1), (1,3), (3,1), (2,3) and (3,2).

The suggested solution x̂ = (15, 0, 10, 0, 0, 0)T corresponds to a spanning tree with the
arcs (1,2) and (1,3), i.e. a basic solution. It is a feasible basic solution since all the balance
equations (in all nodes) are satisfied and all variables are non-negative.

The simplex variables yi are obtained from the equations yi − yj = cij for basic variables,
together with y3 = 0. This gives
y3 = 0,
y1 = y3 + c13 = 0 + 2 = 2,
y2 = y1 − c12 = 2− 3 = −1.

Then the reduced costs for the non-basic variables are obtained from rij = cij − yi + yj :
r21 = 1− (−1) + 2 = 4,
r31 = 1− 0 + 2 = 3,
r23 = 1− (−1) + 0 = 2,
r32 = 1− 0 + (−1) = 0.

Since all rij ≥ 0, the suggested solution is optimal.

However, since r32 = 0, the objective value will not change if we let x32 become a new basic
variable. Let x32 = t and increase t from 0. Then the basic variables will change according
to x12 = 15− t and x13 = 10 + t.
In particular, with t = 15, we obtain a new optimal basic solution x̃ = (0, 0, 25, 0, 0, 15)T.

Check: cTx̂ = 3 · 15 + 2 · 10 = 65. cTx̃ = 2 · 25 + 1 · 15 = 65.
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1.(b)

We apply Gauss–Jordan’s method on the given matrix B =

 1 2 4
8 16 32
64 128 256

.

Add −8 times the first row to the second row and −64 times the first row to the third row.

Then the matrix

1 2 4
0 0 0
0 0 0

 is obtained, and B has been transformed to reduced row

echelon form with only one leading one: U =
[

1 2 4
]
.

Note that N (BT)⊥ = R(B), and that a basis to R(B) is obtained by chosing the columns
in B corresponding to the “leading ones” in U, i.e. the first column in B.

Thus, the single vector

 1
8
64

 forms a basis to R(B), and thus also to N (BT)⊥.

In order to find a basis for N (B), note that the system Bx = 0 is equivalent to the system
Ux = 0, i.e. x1 + 2x2 + 4x3 = 0, for which the general solution is obtained by letting x2 = t
and x3 = s, where t and s are arbitrary real numbers. Then x1 = −2t− 4s, and the general

solution to Bx = 0 can thus be written

x1
x2
x3

 = t ·

−2
1
0

+ s ·

−4
0
1

.

It follows that the two vectors

−2
1
0

 and

−4
0
1

 form a basis for N (B).

By repeating the above steps on BT instead of B the following is obtained:

The single vector

1
2
4

 forms a basis to R(BT), and thus also to N (B)⊥.

The two vectors

−8
1
0

 and

−64
0
1

 form a basis for N (BT).

Check of orthogonality: 1
8
64

T−8
1
0

 = 0,

 1
8
64

T−64
0
1

 = 0,

1
2
4

T−2
1
0

 = 0,

1
2
4

T−4
0
1

 = 0.

The vector (1, b, 1)T belong to N (B) if and only if [ 1 2 3 ](1, b, 1)T = 0,
i.e. if and only if 1 + 2b + 4 = 0, i.e. if and only b = −5/2.
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2.(a) Introduce the following new non-negative variables x′j :
x′1 = x1, x′2 = x2, x′3 − x′4 = x3,
x′5 = slack variable for the constraint x1 − x2 + x3 ≥ 0,
x′6 = slack variable for the constraint x2 + x3 ≥ 0.
Further, introduce the variable vector x′ = (x′1, x

′
2, x

′
3, x

′
4, x

′
5, x

′
6)

T.

Then the problem can be written as the following LP problem on standard form:

minimize cTx′

subject to Ax′ = b, x′ ≥ 0,

where A =

1 −1 1 −1 −1 0
0 1 1 −1 0 −1
1 1 0 0 0 0

, b =

0
0
3

 and c = (0, 0, 1,−1, 0, 0)T.

2.(b) and 2.(c)
The suggested solution x̂ = (2, 1,−1)T corresponds to the solution x̂′ = (2, 1, 0, 1, 0, 0)T

to the above problem on standard form. The optimality of this solution can be verified by
showing that x̂′ is a feasible basic solution with non-negative reduced costs.
Alternatively, the optimality of x̂ = (2, 1,−1)T can be verified using the complementarity
theorem. This is the approach used here, and then 2.(c) is simultaneously solved.
When the primal problem is

P: minimize x3
subject to x1 − x2 + x3 ≥ 0,

x2 + x3 ≥ 0,
x1 + x2 = 3,
x1 ≥ 0, x2 ≥ 0, x3 ”free”,

the corresponding dual problem is

D: maximize 3y3
subject to y1 + y3 ≤ 0,

−y1 + y2 + y3 ≤ 0,
y1 + y2 = 1,
y1 ≥ 0, y2 ≥ 0, y3 ”free”.

The complementary theorem says that x̂ and ŷ are optimal solutions to P and D, respectively,
if and only if

(1) x̂ and ŷ are feasible solutions to P and D,

(2) ŷ1(x̂1 − x̂2 + x̂3) = 0, ŷ2(x̂2 + x̂3) = 0, x̂1(ŷ1 + ŷ3) = 0 and x̂2(−ŷ1 + ŷ2 + ŷ3) = 0.

Since the suggested point x̂ = (2, 1,−1)T is a feasible solution to P, it is an optimal solution
to P if and only if there is a feasible solution ŷ to D such that x̂ and ŷ satisfy (2) above.

Note that x̂ satisfies x̂1 − x̂2 + x̂3 = 0, x̂2 + x̂3 = 0, x̂1 + x̂2 = 3, x̂1 > 0 and x̂2 > 0.
Thus, ŷ must satisfy ŷ1 + ŷ3 = 0, −ŷ1 + ŷ2 + ŷ3 = 0, ŷ1 + ŷ2 = 1, ŷ1 ≥ 0 and ŷ2 ≥ 0.
The unique solution to the first three equations is ŷ = (1/3, 2/3, −1/3)T, and since this
solution satisfies ŷ1 ≥ 0 and ŷ2 ≥ 0, it follows that x̂ and ŷ satisfy (1) and (2) above.

Thus, x̂ = (2, 1,−1)T and ŷ = (1/3, 2/3, −1/3)T are optimal solutions to P and D.
The optimal value of P = x̂3 = −1. The optimal value of D = 3ŷ3 = 3 · (−1/3) = −1.
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3.(a)

The objective function is f(x) = 1
2 xTHx + cTx, with H =

 2 −3 −3
−3 2 −3
−3 −3 2

, c =

10
20
30

.

LDLT-factorization of H gives

H = LDLT =

 1 0 0
−1.5 1 0
−1.5 3 1

  2 0 0
0 −2.5 0
0 0 20

 1 −1.5 −1.5
0 1 3
0 0 1


Since there is a negative diagonal element in D, the matrix H is not positive semidefinite,
which in turn implies that there is no optimal solution to the problemen of minimizing f(x)
without constraints. (With e.g. d = (1, 1, 1)T, f(td) = −12t2 + 60t→ −∞ when t→∞.)

3.(b)

We now have a QP problem with equality constraints, i.e. a problem of the form

minimize 1
2xTHx + cTx subject to Ax = b,

where A = [ 1 1 1 ], b = 3, H =

 2 −3 −3
−3 2 −3
−3 −3 2

 and c =

10
20
30

.

The general solution to Ax = b, i.e. to x1 + x2 + x3 = 3, is given byx1
x2
x3

 =

3
0
0

+

−1
1
0

·v1 +

−1
0
1

·v2, for arbitrary values on v1 and v2,

which means that x̄ =

3
0
0

 is a feasible solution, and Z =

−1 −1
1 0
0 1

 is a matrix

whos columns form a basis for the null space of A.

After the variable change x = x̄+Zv we should solve the system (ZTHZ)v = −ZT(Hx̄+c),

provided that ZTHZ is at least positive semidefinite.

We have ZTHZ =

[
10 5
5 10

]
, which is positive definite (since 10 > 0, 10 > 0, 10·10−5·5 > 0).

The system (ZTHZ)v = −ZT(Hx̄ + c) becomes[
10 5
5 10

](
v1
v2

)
=

(
5
−5

)
, with the unique solution v̂ =

(
1
−1

)
, which implies that

x̂ = x̄ + Zv =

 3
1
−1

 is the unique optimal solution to our problem.
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4.(a)
The objective function is f(x) = (x21 + x22 + 1)1/2 − 0.3x1 − 0.4x2.

The gradient of f becomes ∇f(x) = (
x1

(x21 + x22 + 1)1/2
− 0.3,

x2

(x21 + x22 + 1)1/2
− 0.4 ).

The Hessian of f becomes F(x) =
1

(x21 + x22 + 1)3/2
·
[

1 + x22 −x1x2
−x1x2 1 + x21

]
.

The starting point is given by x(1) =

(
0
0

)
, and then

f(x(1)) = 1, ∇f(x(1)) = (−0.3,−0.4) and F(x(1)) =

[
1 0
0 1

]
.

Since a diagonal matrix with strictly positive diagonal elements is positive definite,
the Hessian F(x(1)) is positive definite, and then the first Newton search direction d(1)

is obtained by solving the system

F(x(1))d = −∇f(x(1))T, i.e.

[
1 0
0 1

]
d =

(
0.3
0.4

)
, with the solution d(1) =

(
0.3
0.4

)
.

First try t1 = 1, so that x(2) = x(1) + t1d
(1) = x(1) + d(1) =

(
0.3
0.4

)
.

Then f(x(2)) =
√

1.25− 0.09− 0.16 < 1.2− 0.25 < 1 = f(x(1)),
so t1 = 1 is accepted, and the first iteration is completed.

4.(b)
The function f is convex on IR2 if and only if the Hessian

F(x) =
1

(x21 + x22 + 1)3/2
·
[

1 + x22 −x1x2
−x1x2 1 + x21

]
is positive semidefinite for all x ∈ IR2,

which holds if and only if

[
1 + x22 −x1x2
−x1x2 1 + x21

]
is positive semidefinite for all x ∈ IR2.

But 1 + x22 > 0, 1 + x21 > 0, and (1 + x22)(1 + x21)− (−x1x2)(−x1x2) = 1 + x21 + x22 > 0

for all x ∈ IR2, which implies that F(x) is in fact positive definite for all x ∈ IR2,
which in turn implies that f is strictly convex on the whole set IR2.

4.(c)

We should solve ∇f(x) = (0, 0), i.e.
x1

(x21 + x22 + 1)1/2
= 0.3 and

x2

(x21 + x22 + 1)1/2
= 0.4.

Some analytical calculations show that the only solution to this system is

x̂ = (x̂1, x̂2)
T = (

0.6√
3
,

0.8√
3

)T.

Since f is strictly convex on IR2, x̂ is the unique globally optimal solution to the problem of
minimizing f(x) on IR2.
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5. With f(x) =

n∑
j=1

cj
1−xj

and g(x) =

n∑
j=1

1

1+xj
− n, the Lagrange function becomes

L(x, y) = f(x) + y g(x) =

n∑
j=1

cj
1−xj

+ y (

n∑
j=1

1

1+xj
− n) = −yn +

n∑
j=1

(
cj

1−xj
+

y

1+xj
).

The Lagrange relaxed problem PRy is defined, for a given y ≥ 0,
as the problem of minimizing L(x, y) with respect to x ∈ X.
But this problem separates into one problem for each variable xj , namely

minimize `j(xj) =
cj

1−xj
+

y

1+xj
subject to − 1 < xj < 1. (0.1)

We have that ` ′j(xj) =
cj

(1−xj)2
− y

(1+xj)2
and ` ′′j (xj) =

2cj
(1−xj)3

+
2y

(1+xj)3
> 0,

which implies that `j(xj) is strictly convex on the interval (−1, 1 ).

In accordance to the instructions, we will from now on only consider the case y > 0.

Then there is a unique solution x̃j(y) to the equation ` ′j(xj) = 0, namely

x̃j(y) =

√
y −√cj
√
y +
√
cj
, (0.2)

which belongs to the interval (−1, 1 ) for all y > 0.
We conclude that this x̃j(y) is the unique optimal solution to the subproblem (??).

The dual objective function is then given by

ϕ(y) = L(x̃(y), y) = −yn +
n∑

j=1

(
cj

1−x̃j(y)
+

y

1+x̃j(y)
) = −yn + 1

2

n∑
j=1

(
√
y +
√
cj )2.

Then ϕ ′(y) = −n +
1

2
√
y

n∑
j=1

(
√
y +
√
cj ) = −n

2
+

1

2
√
y

n∑
j=1

√
cj

and ϕ ′′(y) = − 1

4y
√
y

n∑
j=1

√
cj < 0 for all y > 0, so that ϕ is strictly concave when y > 0.

Assume from now on that n = 3, c1 = 1, c2 = 4 and c1 = 9.

Then ϕ ′(y) = −3

2
+

6

2
√
y

and the unique solution to ϕ ′(y) = 0 is ŷ = 4.

Since ϕ is strictly concave for y > 0 it follows that ϕ(4) > ϕ(y) for all y > 0.

The corresponding primal solution is x̂ = (x̃1(4), x̃2(4), x̃3(4))T = (1/3, 0, −1/5)T,

which satisfies g(x̂) =
1

1 + 1/3
+

1

1 + 0
+

1

1− 1/5
− 3 = 0.

It follows that x̂ = (1/3, 0, −1/5)T and ŷ = 4 satisfy the global optimality conditions,
and thus x̂ is a global optimal solution to the primal problem.

Since X is a convex set and g(x) is a convex function on X, the feasible region for the primal
problem is a convex set. Since, in addition, f(x) is a strictly convex function on X, it follows
that the obtained optimal solution x̂ must be the unique optimal solution to the primal
problem P.
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