
Solutions to exam in SF1811 Optimization, Jan 11, 2017

1.(a) The network is illustrated in the Figure 1 below, where the supply at the nodes are
written in the figure. Negative supply means demand. All arcs are directed from left to right.
Since it is a balances problem (total demand equals total supply), and since the planner’s
suggestion corresponds to a spanning tree in the network, the values of the corresponding
basic variables, i.e. the flows in the spanning tree arcs, can be determined as follows:
x14 = 40, due to the flow balance requirement in node 1,
x23 = 30, due to the flow balance requirement in node 2,
x46 = 40, due to the flow balance requirement in node 4,
x35 = 20, due to the flow balance requirement in node 5,
x36 = 10, due to the flow balance requirement in node 3.
These values are written at the arcs in Figure 2 below.
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Figure 1. The network. Figure 2. The basic solution.

Since the solution correspond to a spanning tree, the flow is balances in every node, and
every xij ≥ 0, it is a BFS (basic feasible solution). To check if it is an optimal solution, we
use the simplex method for network flow problems, starting from this BFS.
First, the simplex multipliers yi for the nodes are calculated from y6 = 0 and yi − yj = cij
for all ars (i, j) in the spanning tree, see Figure 3 below where the costs cij for arcs in the
spanning tree are written at the arcs.
Then the reduced cost for the non-basic variables are calculated from rij = cij − yi + yj , see
Figure 4 below, where the costs cij for arcs not in the spanning tree are written at the arcs.

y1=5 y3=4 y5=1 y1=5 y3=4 y5=1
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Figure 3. Calculations of y_i. Figure 4. Calculations of r_{ij}.
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Since all rij ≥ 0, the current solution is optimal!

1.(b) The minimum cost network flow problem can be written as the LP problem

minimize cTx subject to Ax = b, x ≥ 0,

where x = (x13, x14, x23, x24, x35, x36, x45, x46)
T,

c = (c13, c14, c23, c24, c35, c36, c45, c46)
T = (2, 2, 2, 4, 3, 4, 3, 3)T,

A =



1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
−1 0 −1 0 1 1 0 0

0 −1 0 −1 0 0 1 1
0 0 0 0 −1 0 −1 0
0 0 0 0 0 −1 0 −1

 and b =



40
30
0
0

−20
−50

.

(The equation corresponding to node 6 can be removed since it is a linear combination of the
other five equations, but that is not necessary and has not been done here.)

When the primal problem is on the above standard form, the corresponding dual problem is

maximize bTy subject to ATy ≤ c ,

which here becomes

maximize 40y1 + 30y2 + 0y3 + 0y4 − 20y5 − 50y6
subject to y1 − y3 ≤ 2,

y1 − y4 ≤ 2,
y2 − y3 ≤ 2,
y2 − y4 ≤ 4,
y3 − y5 ≤ 3,
y3 − y6 ≤ 4,
y4 − y5 ≤ 3,
y4 − y6 ≤ 3,

It is well known that an optimal solution to this dual problem is given by the vector y with
simplex multipliers from 1.(a), i.e. y = (5, 6, 4, 3, 1, 0)T. Then the right hand sides minus the
left hand sides of the dual constraint become c −ATy = (1, 0, 0, 1, 0, 0, 1, 0)T ≥ 0, which
shows that y is a feasible solution to the dual problem.
The (dual) objective value of this solution is bTy = 40 · 5 + 30 · 6− 20 · 1− 50 · 0 = 360,
while the (primal) objective value of the solution x = (0, 40, 30, 0, 20, 10, 0, 40)T, calculated
in (a) above, is cTx = 2 · 40 + 2 · 30 + 3 · 20 + 4 · 10 + 3 · 40 = 360.

Since x is a feasible solution to the primal problem, y is a feasible solution to the dual
problem, and cTx = bTy, the duality theorem tells us that x and y are optimal solution to,
respectively, the primal and the dual problems.
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2.(a) We have an LP problem on the standard form

minimize cTx subject to Ax = b, x ≥ 0.

where A =

[
2 1 2
1 1 4

]
, b =

(
6
9

)
and cT = (3, 3, 6).

If x2 and x3 are chosen as basic variables then β = (2, 3) and ν = (1),

and the corresponding basic matrix is Aβ =

[
1 2
1 4

]
, while Aν =

[
2
1

]
.

Since det(Aβ) 6= 0, the columns of Aβ are linearly independent, as they should be for a
basic matrix, and then the values of the current basic variables are given by xβ = b̄,
where the vector b̄ is calculated from the system Aβb̄ = b, i.e.[

1 2
1 4

](
b̄1
b̄2

)
=

(
6
9

)
, with the solution b̄ =

(
b̄1
b̄2

)
=

(
3

1.5

)
.

Since b̄ ≥ 0, the solution xβ = b̄ and xν = 0 (i.e. x1 = 0, x2 = 3, x3 = 1.5 ) is a BFS.

The vector y with simplex multipliers is obtained from the system AT
βy = cβ, i.e.[

1 1
2 4

](
y1
y2

)
=

(
3
6

)
, with the solution y =

(
y1
y2

)
=

(
3
0

)
.

Then the reduced cost for the non-basic variable is obtained from

rTν = cTν − yTAν = 3− (3, 0)

[
2
1

]
= −3.

Since rν1 = r1 = −3 < 0, we let x1 become the new basic variable.

Then we should calculate the vector ā1 from the system Aβā1 = a1, i.e.[
1 2
1 4

](
ā11
ā21

)
=

(
2
1

)
, with the solution ā1 =

(
ā11
ā21

)
=

(
3
−0.5

)
.

The largest permitted value of the new basic variable x1 is then given by

tmax= min
i

{
b̄i
āi1
| āi1 > 0

}
= min

{
3

3
, −

}
=

3

3
=

b̄1
ā11

.

Minimizing index is i = 1, which implies that xβ1 = x2 should no longer be a basic variable.
Its place as basic variable is taken by x1, so that β = (1, 3) and ν = (2).

The corresponding basic matrix is Aβ =

[
2 2
1 4

]
, while Aν =

[
1
1

]
.

The values of the current basic variables are xβ = b̄, where the vector b̄ is
calculated from the system Aβb̄ = b, i.e.[

2 2
1 4

](
b̄1
b̄2

)
=

(
6
9

)
, with the solution b̄ =

(
b̄1
b̄2

)
=

(
1
2

)
.

The vector y with simplex multipliers is obtained from the system AT
βy = cβ, i.e.[

2 1
2 4

](
y1
y2

)
=

(
3
6

)
, with the solution y =

(
y1
y2

)
=

(
1
1

)
.
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Then the reduced cost for the non-basic variable is obtained from

rTν = cTν − yTAν = 3− (1, 1)

[
1
1

]
= 1.

Since rν ≥ 0 the current feasible basic solution is optimal.
Thus, x = (1, 0, 2)T is an optimal solution, with optimal value cTx = 15.

2.(b) Now it is assumed that b =

(
4
9

)
(instead of

(
6
9

)
).

With x2 and x3 as basic variables, the values of these variables are given by xβ = b̄,
where the vector b̄ is calculated from the system Aβb̄ = b, i.e.[

1 2
1 4

](
b̄1
b̄2

)
=

(
4
9

)
, with the solution b̄ =

(
b̄1
b̄2

)
=

(
−1
2.5

)
.

Since b̄1 < 0, the basic solution xβ = b̄ and xν = 0 (i.e. x1 = 0, x2 = −1, x3 = 2.5 )
is NOT a BFS.

2.(c) Let x4 = v1 and x5 = v2.

Then the “Phase 1 problem” also becomes a problem on the standard form:

minimize cTx subject to Ax = b, x ≥ 0.

But now A =

[
2 1 2 1 0
1 1 4 0 1

]
, b =

(
4
9

)
and cT = (0, 0, 0, 1, 1).

The suggested starting solution should have the basic variables v1 and v2,
i.e. x4 and x5, which means that β = (4, 5) and ν = (1, 2, 3).

The corresponding basic matrix is Aβ =

[
1 0
0 1

]
, while Aν =

[
2 1 2
1 1 4

]
.

The columns of Aβ are linearly independent, as they should be for a basic matrix.
Then the values of the current basic variables are given by xβ = b̄,
where the vector b̄ is calculated from the system Aβb̄ = b, i.e.[

1 0
0 1

](
b̄1
b̄2

)
=

(
4
9

)
, with the solution b̄ =

(
b̄1
b̄2

)
=

(
4
9

)
.

Since b̄ ≥ 0, the solution xβ = b̄ and xν = 0 (i.e. x1 = x2 = x3 = 0, v1 = x4 = 4
and v2 = x5 = 9) is a BFS.

The vector y with simplex multipliers is obtained from the system AT
βy = cβ, i.e.[

1 0
0 1

](
y1
y2

)
=

(
1
1

)
, with the solution y =

(
y1
y2

)
=

(
1
1

)
.

Then the reduced cost for the non-basic variable is obtained from

rTν = cTν − yTAν = (0, 0, 0)− (1, 1)

[
2 1 2
1 1 4

]
= (−3, −2, −6).

Since rν3 = r3 = −6 is smallest, and < 0, we let x3 become the new basic variable.

4



Then we should calculate the vector ā3 from the system Aβā3 = a3, i.e.[
1 0
0 1

](
ā13
ā23

)
=

(
2
4

)
, with the solution ā3 =

(
ā13
ā23

)
=

(
2
4

)
.

The largest permitted value of the new basic variable x3 is then given by

tmax= min
i

{
b̄i
āi3
| āi3 > 0

}
= min

{
4

2
,

9

4

}
=

4

2
=

b̄1
ā13

.

Minimizing index is i = 1, which implies that xβ1 = x4 should no longer be a basic variable.
Its place as basic variable is taken by x3, so that β = (3, 5) and ν = (1, 2, 4).

The corresponding basic matrix is Aβ =

[
2 0
4 1

]
, while Aν =

[
2 1 1
1 1 0

]
.

The values of the current basic variables are given by xβ = b̄, where the vector b̄ is
calculated from the system Aβb̄ = b, i.e.[

2 0
4 1

](
b̄1
b̄2

)
=

(
4
9

)
, with the solution b̄ =

(
b̄1
b̄2

)
=

(
2
1

)
.

The vector y with simplex multipliers is obtained from the system AT
βy = cβ, i.e.[

2 4
0 1

](
y1
y2

)
=

(
0
1

)
, with the solution y =

(
y1
y2

)
=

(
−2
1

)
.

Then the reduced cost for the non-basic variable is obtained from

rTν = cTν − yTAν = (0, 0, 1)− (−2, 1)

[
2 1 1
1 1 0

]
= (3, 1, 3).

Since rν ≥ 0 the current feasible basic solution is optimal.

Thus, the BFS defined by xβ = b̄ and xν = 0 is an optimal solution, which means that
x1 = 0, x2 = 0, x3 = 2, v1 = 0, v2 = 1 is an optimal solution to the problem P3,
with optimal value v1 + v2 = 0 + 1 = 1.

We shall now motivate that since the optimal value of P3 is > 0, there is no feasible
solution to P2.

Let A =

[
2 1 2
1 1 4

]
, I =

[
1 0
0 1

]
and b =

(
4
9

)
,

and assume that there is at least one feasible solution to P2.
This means that there is a vector x̃ ∈ IR3 which satisfies Ax̃ = b and x̃ ≥ 0.

Let ṽ = 0 ∈ IR2. Then

(
x̃
ṽ

)
∈ IR 5 is a feasible solution to P3, since

[ A I ]

(
x̃
ṽ

)
= Ax̃ + I ṽ = Ax̃ = b and

(
x̃
ṽ

)
≥
(

0
0

)
.

Further, this feasible solution to P3 has the objective value ṽ1 + ṽ2 = 0 + 0 = 0.

But this is a contradiction, since according to above the optimal value of P3 is = 1 > 0.

The conclusion is that there is no feasible solution to P2.
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3.(a) The constraints (1) kan be written on the form Ax = b, where

x =


xsw
xnw
xne
xse

, A = 1
2


1 0 0 1
1 1 0 0
0 1 1 0
0 0 1 1

 and b =


bs
bw
bn
be

 = 1
2


2bs
2bw
2bn
2be

.

We use elementary row operations to transform Ax = b to reduced row echelon form:

1
2


1 0 0 1 2bs
1 1 0 0 2bw
0 1 1 0 2bn
0 0 1 1 2be

 −→ · · · −→ 1
2


1 0 0 1 2bs
0 1 0 −1 2bw−2bs
0 0 1 1 2bn−2bw+2bs
0 0 0 0 2be−2bn+2bw−2bs


From this reduced row echelon form, it follows that:

If 2be−2bn+2bw−2bs 6= 0 then there is no solution to Ax = b.

If 2be−2bn+2bw−2bs = 0 then the general solution to Ax = b is obtained by letting
xse = v (an arbitrary number), whereafter xsw = 2bs − v, xnw = 2bw−2bs + v,
and xne = 2bn−2bw+2bs − v, which can be written

x =


xsw
xnw
xne
xse

 =


2bs

2bw−2bs
2bn−2bw+2bs

0

+


−1

1
−1

1

 v = x̄ + z v,

for v ∈ IR, where x̄ is one solution to Ax = b, and z is a basis for the null-space of A.

Since different values of v give different solutions x, there is an infinite number of solutions
to Ax = b if 2be−2bn+2bw−2bs = 0. But 2be−2bn+2bw−2bs = 0 ⇔ wTb = 0.

3.(b) Now we should solve the problem: minimize 1
2(x−b̃)T(x−b̃) subject to Ax = b,

where b =


bs
bw
bn
be

 =


1
3
4
2

 and b̃ =


bsw
bnw
bne
bse

 = 1
2


bs + bw
bn + bw
bn + be
bs + be

 =


2

3.5
3

1.5

.

Since 1
2(x−b̃)T(x−b̃) = 1

2 xTx− b̃Tx + 1
2 b̃Tb̃, this is a problem of the form

minimize 1
2xTHx + cTx + c0 subject to Ax = b,

with A and b as above, c = −b̃, and H = I = the 4×4 identity matrix. (c0 can be ignored.)

Since a nullspace method should be used, we use the above transformation x = x̄ + z v,
where x̄ = (2, 4, 4, 0)T and z = (−1, 1,−1, 1)T.

Changing variables from x ∈IR4 to v ∈IR leads to a quadratic objective function which
is uniquely minimized by the solution v̂ to the system (zTH z) v = −zT(Hx̄ + c),
provided that zTH z is positive definite (> 0 in this one-variable case).

We get that zTH z = zTz = 4 > 0 and −zT(Hx̄ + c) = −zT(x̄− b̃) = 2,
so the unique solution to (zTH z) v = −zT(Hx̄ + c) is v̂ = 0.5,
and thus the unique optimal solution to the considered QP problem is

x̂ = x̄ + z v̂ = (2, 4, 4, 0)T + 0.5 (−1, 1,−1, 1)T = (1.5, 4.5, 3.5, 0.5)T
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4.(a) Let c1 = 9, c2 = 16 and c3 = 25.

Then the objective function can be written f(x) =
3∑
j=1

(
1

xj
+ cjxj ),

while the constraint function for the explicit constraint is g(x) = −b+

3∑
j=1

1

xj
.

The Lagrange function becomes L(x, y) = f(x) + yg(x) = −by +
3∑
j=1

( cjxj +
1+y

xj
).

The Lagrange relaxed problem PRy is defined, for a given y ≥ 0, as follows:

PRy : minimize L(x, y) subject to x ∈ X.

But this problem separates into one problem for each variable xj :

minimize `j(xj) = cjxj +
1+y

xj
subject to xj > 0.

We have that ` ′j(xj) = cj −
1+y

x2j
and ` ′′j (xj) =

2(1+y)

x3j
> 0 for all xj > 0, since y ≥ 0.

Thus, `j(xj) is strictly convex. Further, the equation ` ′j(xj) = 0 has the unique solution

x̃j(y) =

√
1+y
√
cj

, which is > 0, since y ≥ 0.

Therefore, the optimal solution to the Lagrange relaxed problem PRy is

x̃(y) = (x̃1(y), x̃2(y), x̃3(y))T =

(√
1+y

3
,

√
1+y

4
,

√
1+y

5

)T

.

The dual objective function is then given by

ϕ(y) = L(x̃(y), y) = −by +
n∑
j=1

`j(x̃j(y)) = · · · = −by + 24
√

1+y,

with ϕ ′(y) = −b+
12√
1+ y

and ϕ ′′(y) =
−6

(1+ y)3/2
< 0 for all y ≥ 0.

4.(b). Assume that b = 6.

Then the unique solution to ϕ ′(y) = 0 is ŷ = 3.
This implies, since ϕ is strictly concave for y ≥ 0, that ϕ(ŷ) = ϕ(3) > ϕ(y) for all y ≥ 0.

The corresponding primal solution is x̂ = x̃(ŷ) = (x̃1(3), x̃2(3), x̃3(3))T = (2/3, 2/4, 2/5)T.

It should now be verified that x̂ and ŷ satisfy the global optimality conditions (GOC):

GOC-1 is satisfied since x̂ = x̃(ŷ).
GOC-2 is satisfied since g(x̂) = −6 + 3/2 + 4/2 + 5/2 = 0 ≤ 0.
GOC-3 is satisfied since ŷ = 3 ≥ 0.
GOC-4 is satisfied since ŷg(x̂) = 3 · 0 = 0.

As an additional verification of optimality, we check if f(x̂) = ϕ(ŷ) :

f(x̂) = 3/2 + 4/2 + 5/2 + 6 + 8 + 10 = 30 and ϕ(ŷ) = −6 · 3 + 24
√

1+3 = 30.
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4.(c). Assume that b = 18.

Then ϕ ′(y) = −18 +
12√
1+ y

< 0 for all y ≥ 0,

which implies that ϕ is strictly decreasing for all y ≥ 0,
which in turn implies that ϕ(0) > ϕ(y) for all y ≥ 0.

Thus, when b = 18, the optimal dual solution is ŷ = 0.

The corresponding primal solution is x̂ = x̃(ŷ) = (x̃1(0), x̃2(0), x̃3(0))T = (1/3, 1/4, 1/5)T.

It should now be verified that x̂ and ŷ satisfy the global optimality conditions (GOC):

GOC-1 is satisfied since x̂ = x̃(ŷ).
GOC-2 is satisfied since g(x̂) = −18 + 3 + 4 + 5 = −6 ≤ 0.
GOC-3 is satisfied since ŷ = 0 ≥ 0.
GOC-4 is satisfied since ŷg(x̂) = 0 · (−6) = 0.

As an additional verification of optimality, we check if f(x̂) = ϕ(ŷ) :

f(x̂) = 3 + 4 + 5 + 3 + 4 + 5 = 24 and ϕ(ŷ) = −10 · 0 + 24
√

1+0 = 24.
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5. The objective function is f(x) = x21x
2
2 + 2x21 + 2x22 − 12x1 − 12x2.

The gradient (as column vector) ∇f(x)T and the Hessian matrix F(x) of f become

∇f(x)T =

(
2x1x

2
2 + 4x1 − 12

2x21x2 + 4x2 − 12

)
and F(x) =

[
2x22 + 4 4x1x2

4x1x2 2x21 + 4

]
.

5.(a). The starting point for Newton’s method is given by

x(1) =

(
1
0

)
. Then f(x(1)) = −10, ∇f(x(1))T =

(
−8
−12

)
and F(x(1)) =

[
4 0
0 6

]
.

F(x(1)) is positive definite since 4 > 0, 6 > 0 and 4 · 6− 0 · 0 > 0.
Then the first Newton search direction d(1) is obtained by solving the system

F(x(1)) d = −∇f(x(1))T, i.e.

[
4 0
0 6

]
d =

(
8
12

)
, with the solution d(1) =

(
2
2

)
.

First, try t1 = 1, so that x(2) = x(1) + t1d
(1) = x(1) + d(1) =

(
3
2

)
.

Then f(x(2)) = 2 > f(x(1)), so t1 = 1 is not accepted.

Next, try t1 = 0.5, so that x(2) = x(1) + t1d
(1) = x(1) + 0.5 d(1) =

(
2
1

)
.

Then f(x(2)) = −22 < f(x(1)), so t1 = 0.5 is accepted, and the first iteration is completed.

5.(b). Since each of the sets Ci, i = 1, 2, 3, has interior points (e.g. x = 0), f is convex

on Ci if and only if F(x) =

[
2x22 + 4 4x1x2

4x1x2 2x21 + 4

]
is positive semidefinite for all x ∈ Ci.

The diagonal elements in F(x) are always > 0, so F(x) is positive semidefinite for all x ∈ Ci
if and only if (2x22 + 4)(2x21 + 4)− (4x1x2)(4x1x2) ≥ 0 for all x ∈ Ci.

In particular, if x1=x2 then (2x22 + 4)(2x21 + 4)− (4x1x2)(4x1x2) = (2x21 + 4)2 − (4x21 )2,
which is < 0 if 4 < 2x21. Thus, if x = (x1, x2)

T = (1.5, 1.5)T which satisfies xTx = 4.5,
then F(x) is not positive semidefinite. This shows that f is not convex on C3.

Assume that x ∈ C2. Then 4 > xTx = x21 + x22, and thus

(2x22 + 4)(2x21 + 4)− (4x1x2)(4x1x2) > (3x22 + x21)(3x
2
1 + x22)− (4x1x2)(4x1x2) =

3x41 + 3x42 + 10x21x
2
2 − 16x21x

2
2 = 3 (x41 + x42 − 2x21x

2
2) = 3 (x21 − x22)2 ≥ 0.

This shows that f is convex on C2.

Finally, since C1 is a convex subset of C2, f is convex on C1.
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5.(c) Assume that x̃ is a local optimum solution and x̃1 6= x̃2. Then

∇f(x̃)T =

(
2x̃1x̃

2
2 + 4x̃1 − 12

2x̃21x̃2 + 4x̃2 − 12

)
=

(
0

0

)
.

By subtracting the first equations from the second, we obtain that
2x̃1x̃2(x̃1 − x̃2) + 4(x̃2 − x̃1) = 0, i.e. that (2x̃1x̃2 − 4)(x̃1 − x̃2) = 0.

This implies, since x̃1 6= x̃2, that 2x̃1x̃2 = 4.
If this is plugged into the above two equations, we obtain that

∇f(x̃)T =

(
4x̃2 + 4x̃1 − 12

4x̃1 + 4x̃2 − 12

)
=

(
0

0

)
, i.e. that x̃1 + x̃2 = 3,

which together with 2x̃1x̃2 = 4 implies that (x̃1, x̃2)
T = (2, 1)T or (1, 2)T.

On the other hand, if (x̃1, x̃2)
T = (2, 1)T or (1, 2)T then ∇f(x̃)T = 0 and

F(x̃) =

[
6 8

8 12

]
or

[
12 8

8 6

]
, which are both positive definite.

Thus, the two points (2, 1)T and (1, 2)T are local optimal solutions.

5.(d) Assume that x̃ is a local optimum solution and x̃1 = x̃2 = t.
Then two things must hold:

First, ∇f(x̃)T =

(
2t3+4t−12

2t3+4t−12

)
=

(
0

0

)
, i.e. 2t3+4t−12 = 0.

Second, F(x̃) =

[
2 t2+4 4 t2

4 t2 2 t2+4

]
is positive semidefinite, i.e. 4 ≥ 2 t2.

Since p(t) = 2t3+4t− 12 is a strictly increasing polynomial with p(1) < 0 and p(2) > 0,
there is a unique solution to the equation p(t) = 0, and this solution satisfies 1 < t < 2.
Then the above requirement that 4 ≥ 2 t2 implies that 1 < t ≤

√
2.

But since both p(1) < 0 and p(
√

2) = 8(
√

2− 1.5) < 0, there is no solution to p(t) = 0
with t ∈ (1,

√
2 ] .

Thus, the assumption that x̃ is a local optimum solution and x̃1 = x̃2 leads to a
contradiction. Therefore, there is no such x̃.
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