
Solutions for the exam in Optimization.
tuesday August 25, 2009, time. 14.00–19.00

Instructor: Per Enqvist, tel. 790 62 98
There may be alternative solutions to the problem.

1. (a) The network can be described by the graph
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where the optimal distribution plan is depicted. It is clearly feasible and cor-
responds to a spanning tree and basic solution.
The costs in the network could represent the cost of gasoline for driving the
distance between physical truck stations, but also include toll expenses, driver
salary, environmental fees and so on.
Put the node potential y5 at node 5 to be 0. Then y2 − y5 = c25 gives y2 = 2.
Then y2 − y3 = c23 gives y3 = 0.
Then y3 − y4 = c34 gives y4 = −2.
Then y1 − y4 = c14 gives y1 = 0.

The reduced costs are now r13 = c13 − y1 + y3 = 2 and r35 = c35 − y3 + y5 = 2.
(i.e. the total cost will increase with 2 units per lorry that takes the route
through arc 13 or 35) Since the reduced costs are positive this verifies that the
solution above is optimal.

(b) The problem (P ) can be written on standard form

(Ps)

 min
x

cTx

s.t. Ax = b
x ≥ 0


where

A =
[

1 −1 1 −1 1 0
2 −2 3 −1 0 −1

]
, b =

[
1
2

]
, c =

[
1 −1 −1 3 0 0

]T
.

(c) Assume that x and y are feasible for the primal and dual respectively. We have
then that bT y = (Ax)T y = xT (AT y) ≤ xT c = cTx and the inequality followed
since x ≥ 0 and AT y ≤ c.
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2. (a) The standard form is

(Ps)


min

x
x1 − 2x2

s.t. x1 + 3x2 + x3 = 1
x1 − x2 + x4 = 1
x ≥ 0


We start with x1 and x2 in the basis, that is basic and non-basic variable indices
are given by β = {1, 2} and η = {3, 4}, so

B =
[

1 3
2 −1

]
, N =

[
1 0
0 1

]
and b̄ = B−1b = [4/7 1/7]T giving the starting basic solution x = (4/7, 1/7, 0, 0).
Then the equations BT y = cB and ĉTN = cTN − yTN gives

y =
[
−3/7

5/7

]
, ĉTN =

[
3/7 −5/7

]
.

Let x4 enter the basis. Which one should exit ?
From Bâ4 = a4, we get â4 = 1/7 ∗ (3,−1)T , and since the second element is
negative, x1 exits the basis.
Update the basis and nonbasis matrices: Basic and non-basic variable indices
are given by β = {2, 4} and η = {1, 3}, and

B =
[

3 0
−1 1

]
, N =

[
1 1
2 0

]
Then the equations BT y = cB and ĉTN = cTN − yTN gives

y =
[
−2/3

0

]
, ĉTN =

[
5/3 2/3

]
.

Since all reduced costs are nonnegative, the current bfs x̂ = (0, 1/3, 0, 4/3)T is
optimal.

(b) First determine the nullspace matrix of A.
Perform row-operations to obtain[

1 0 1/7 3/7
0 1 2/7 −1/7

]
,

then

Z =


−1/7 −3/7
−2/7 1/7

1 0
0 1

 .
Then

x̂− x̄ =


0

1/3
0

4/3

−


4/7
1/7
0
0

 =


−4/7
4/21

0
4/3

 =


−1/7 −3/7
−2/7 1/7

1 0
0 1

[ 0
4/3

]
= Zv.

(The v you get depends on which Z you use)
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(c) You need to check if there is a solution to the equation ATx = c, i.e.
1 2
3 −1
1 0
0 1

[ x1

x2

]
=


1
−2
0
0


But this equation system clearly has no solution.

(d) We know that R(AT )⊥ = N (A), and since Ac = [−5 4]T the vector c is not in
the nullspace of A.

3. (a) For f to be convex on the whole R3 it is necessary that the matrix H is positive
semidefinite. Use LDLT -factorization:

H =

 1 0 0
2 1 0
1 −2 1

 1 0 0
0 1 0
0 0 5

 1 2 1
0 1 −2
0 0 1

 .
Since all the diagonal elements in the D-matrix are positive, the matrix H is
positive definite.

(b) With the nullspace method a Z-matrix and x̄ given by

Z =

 1 0
0 −1
0 1

 , x̄ =

 0
0
1

 ,
the equation system (ZHZT )v = −ZT (Hx̄+ c):[

1 −1
−1 15

]
v =

[
1
−15

]
,

yields v = [0 − 1]T . Therefore, x̂ = x̄ + Zv = [0 1 0]T is a global minimum
since the problem is convex.

(c) For the Lagrange method, the following equation system must be solved[
H −AT

A 0

] [
x̂
û

]
=
[
−c
b

]
,

That is: 
1 2 1 0
2 5 0 −1
1 0 10 −1
0 1 1 0




0
1
0
û

 =


2
1
−4
1

 ,
from which we see that û = 4.

4. (a) For the optimization problem to be convex, it is necessary that the feasible
region is convex and that the objective function is convex on the whole feasible
region.
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The objective function is convex since it is the sum of the convex functions

f1(x) = ex1+x3 − x1 − x3, f2(x) = x4
2 + 4x2.

whose convexity follows from

∇2f1(x) =

 1 0 1
0 0 0
1 0 1

 ≥ 0∀x, ∇2f1(x) =

 0 0 0
0 12x2

2 0
0 0 0

 ≥ 0∀x.

The feasible region is not convex since it is given by non-linear equality con-
straints where, for example, the points x(1) = (1, 0, 0) and x(2) = (−1, 0, 0) are
feasible, but x(a) = 1/2x(1) + 1/2x(2) is not feasible.
Therefore, the optimization problem is not convex.

(b) The points x(1) = (1, 0, 0), x(2) = (−1, 0, 0) and x(3) = (0,−1, 0) are feasible
points with the third coordinate equal to zero.

(c) Let h1(x) = x2
1 + x2

2 + x2
3 − 1 and h2(x) = x2

1 − 1− x2, then

∇f(x) =
[
ex1+x3 − 1 4x3

2 + 4 ex1+x3 − 1
]
,

∇h1(x) =
[

2x1 2x2 2x3

]
, ∇h2(x) =

[
2x1 −1 0

]
.

In x(1), we have ∇f(x(1)) + u1∇h1(x(1)) + u2∇h2(x(1)) equal to[
e− 1 + 2u1 + 2u2 4 + 0u1 + (−1)u2 e− 1 + 0u1 + 0u2

]
,

which can never be zero.
In x(2), we have ∇f(x(2)) + u1∇h1(x(2)) + u2∇h2(x(2)) equal to[

1/e− 1− 2u1 − 2u2 4 + 0u1 − 1u2 1/e− 1 + 0u1 + 0u2

]
,

which can never be zero.
In x(3), we have ∇f(x(3)) + u1∇h1(x(3)) + u2∇h2(x(3)) equal to[

1− 1 + 0u1 + 0u2 −4 + 4 + (−2)u1 − 1u2 1− 1 + 0u1 + 0u2

]
,

which is zero for u1 = u2 = 0.
So only the last point satisfies the KKT-conditions.

(d) The only point that could be globally optimal is x(3), since it is the only one
satisfying the KKT-conditions. But the problem is not convex, so the KKT-
conditions are not sufficent. However, the gradient of f is zero at x(3) and the
objective function is convex on the whole R3 so therefore it is optimal on the
whole space and hence also optimal on the constrained space.

5. (a) For the optimization problem to be convex, it is necessary that the feasible
region is convex and that the objective function is convex on the whole feasible
region.
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The objective function is not convex since the part depending on x2 is in fact
strictly concave. With the functions

g1(x) = x2
1 + x2

2 − 1 g2(x) = x2
1 − 1− x2

the constraints can be written g1(x) ≤ 0 and g2(x) ≤ 0, and since these func-
tions are convex the constraints define a convex feasible region.
However, the optimization problem is not convex.

(b) At the point x(b) both the constraints are active (gi(x(b)) = 0 for i = 1, 2),
which shows that the point is feasible and that both Lagrange parameters may
be non-zero.
The gradient of f is given by

∇f(x) =
[
−e−x1 −2x2

]
.

At the given point

∇f(x(b))T =
(
−1/e

0

)
,

∇g1(x(b))T =
(

2
0

)
, ∇g2(x(b))T =

(
2
−1

)
.

For the KKT-conditions to be satisfied we need to find non-negative Lagrange
parameters such that(

−1/e
0

)
+
(

2
0

)
y1 +

(
2
−1

)
y2 =

(
0
0

)
Now y1 = 1/(2e) and y2 = 0. So the KKT-conditions are satisfied.
But since the problem is not convex, we can not say that x(b) is a local minimum
based on this. (In fact it is not a local minimum)

(c) Along the arc of the circle in the positive orthant the constraint g1 is active
and the other is not. (except for the point considered in (b))
That is, the equation x2

1 + x2
2 = 1 must hold and also the following KKT

conditions, y2 = 0 and(
−e−x1

−2x2

)
+
(

2x1

2x2

)
y1 =

(
0
0

)
.

Therefore, if x2 6= 0 then y1 = 1 and −e−x1 + 2x1 = 0, giving us the equation
that x1 must solve, namely e−x1 = 2x1 which clearly as a solution in the interval
(0, 1). (if x2 = 0 then we get the point x(b))

(d) This can be done in a number of ways. First note that the region is a compact
convex set and the objective function is continuous, so we know that at least
one optimal point exists. One approach is to find all KKT-points and compare
the values at those points. Symmetry of the feasible region can be used to
deduce that there must be an optimal point in the positive orthant. In fact,
the feasible region is symmetric in the x1 variable, but for each negative x1

the objective function take a larger value than for the corresponding positive
value −x1. Similarly, the objective function takes the same value for a positive
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x2 and the corresponding negative value −x2, but if the negative value −x2 is
feasible, then x2 is also feasible and therefore an optimal positive x2 can be
found. The gradient of f , ∇f(x) = (−e−x1 , −2x2), is non-zero for all x in
the positive orthant, so no interior point of the feasible region can be optimal,
hence the optimum is obtained at the boundary. Along the arc we have that
f(x) = e−x1−1+x2

1, which is a convex function and assumes it minimum when
the derivative is zero, i.e. at the point in (c).


