
SF2812 Applied linear optimization, final exam
Friday January 9 2009 8.00–13.00

Brief solutions

1. (a) The primal-dual system of equations can be written as

x1 + x2 = 1, (1a)
y + s1 = 1, (1b)
y + s2 = 1, (1c)

x1s1 = µ, (1d)
x2s2 = µ. (1e)

where we also implicitly demand x > 0 and s > 0. We conclude from (1b)
and (1c) that s1 = s2. Hence, (1d) and (1e) give x1 = x2 = 1/2. Thus,
s1 = s2 = 2µ. Finally, y = 1− 2µ.
In summary,

x(µ) =

(
1
2
1
2

)
, y(µ) = 1− 2µ, s(µ) =

(
2µ

2µ

)
.

(b) Letting µ→ 0 gives

x =

(
1
2
1
2

)
, y = 1, s =

(
0
0

)
.

It is straightforward to very that Ax = b, x ≥ 0, ATy + s = c, s ≥ 0. Conse-
quently, optimality holds.

(c) The given optimal solution to (LP ) is not a basic feasible solution. Hence, it
would not have been given by the simplex method.

2. (See the course material.)

3. (a) Lagrangian relaxation for u = (1 1)T gives

min −5x1 − 8x2 − 9x3 − 9x4

subject to −3x1 − 4x2 − 5x3 − 6x4 ≥ −9,
x ≥ 0, x integer.

This problem is equivalent to the given knapsack problem. The optimal solution
is x(1) = (0 1 1 0)T .
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(b) Insertion of the optimal solution x(1) in the relaxed constraints gives a subgra-
dient according to(

−2 + x1(1) + x2(1) + x3(1)
−2 + x2(1) + x3(1) + x4(1)

)
=

(
0
0

)
.

Since the subgradient is zero, it follows that u = (1 1)T is optimal to the dual
problem. In addition, it follows that the duality gap is zero and x(1) is optimal
to (IP ).

4. The values of b1 and b2 must be such that Ax̂ = b, which gives b1 = 6 and b2 = 10.
For these values of b1 and b2, the given x̂ is feasible.

The given x̂ is not a basic feasible solution. In order for x̂ to be optimal, there
cannot be a basic feasible solution with lower objective function value. To find a
basic feasible solution, we may compute directions in the null space of A+, and
successively add constraints. The v given in the hint is such that A+v+ = 0, v0 = 0.
Hence, if x̂ is optimal, it must hold that cTv = 0. This implies that c1 = 3. If we
compute the maximum value of α such that of x̂ + αv ≥ 0, we obtain αmax = 1.
The point x̂ + αmaxv has one more active constraint, and is in fact a basic feasible
solution, with x1 = 4 and x3 = 2 as basic variables. The simplex multipliers are
given by BTy = cB, i.e.,

(
1 1
1 3

)(
y1

y2

)
=

(
3
−1

)
,

which gives y = (5 − 2)T . The reduced costs are now given by s = c − ATy =
(0 0 0 c4 + 3)T . Consequently, s ≥ 0 if c4 ≥ −3. As the basic variables are strictly
positive, it follows that the basic feasible solution is not optimal if c4 < −3. Hence,
we conclude that x̂ is optimal if and only if b1 = 6, b2 = 10, c1 = 3 and c4 ≥ −3.

5. (a) For the given cut patterns, we obtain

B =


0 1 2
0 2 0
2 0 1

 , xB = B−1b =


1.875
7.5
6.25

 , y = B−Te =


1
4
3
8
1
2

 ,

with e = (1 1 1)T . As λ ≥ 0 no slack variables enters the basis.
We obtain the subproblem

1 − 1
8maximize 2α1 + 3α2 + 4α3

subject to 3α1 + 4α2 + 5α3 ≤ 11,
αi ≥ 0, integer, i = 1, 2, 3.

We may enumerate the feasible solutions for this small problem to conclude
that the optimal value of the subproblem is zero. Hence, the linear program
has been solved, and its optimal value is 15.625.
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(b) If we round up, we obtain x̃ = (2 8 7), which is at most one roll away from
optimality, since we use 17 rolls, and the lower bound from the LP relaxation
may be rounded up to 16. In fact, we may try to decrease each component of
x̃ by one, which is feasible for the third component, and we obtain an optimal
solution x̂ = (2 8 6).
(Note that this is very special. In general one can not expect to obtain an
optimal integer solution in this way.)


