
SF2812 Applied linear optimization, final exam
Monday October 19 2009 14.00–19.00

Brief solutions

1. (See the course material.)

2. Let z denote the integer variable and let x denote the continuous variables.

At node 0, the LP relaxation of the original problem is solved. Let x0, z0 denote an
optimal solution to this linear program. If z0 is integer, we have solved the original
problem at node 0, i.e., the original problem.

If z0 is noninteger, there will be two new nodes in the search tree, one node (node 1)
with the additional constraint z ≥ ceil(z0), and one node (node 2) with the constraint
z ≤ floor(z0), where floor means rounding down to the nearest integer and ceil means
rounding up to the nearest integer.

At node 1, the LP relaxation is solved. If this LP is infeasible, the problem at node
1 is infeasible and the node is fathomed. Otherwise, let x1, z1 denote an optimal
solution. If z1 = ceil(z0), then the problem at node 1 has been solved, and the node
is fathomed. If z1 > ceil(z0), then the constraint z ≤ ceil(z0) is inactive at x1, z1.
Hence, x1, z1 is optimal to the LP relaxed problem of node 0 as well. By assumption
that this LP had a unique optimal solution, this cannot happen.

The same argument can be applied to node 2, with the constraint z ≥ ceil(z0)
replaced by z ≤ floor(z0).

Hence, it takes at most three nodes.

(The assumption about unique LP solutions is merely to avoid some technicalities.
Note that if z1 > ceil(z0), then(

x0

z0

)
+

ceil(z0)− z0

z1 − z0

(
x1 − x0

z1 − z0

)

is an optimal solution to the LP relaxation at node 0 where the z component is
integer, ceil(z0). Hence, the integer program has been solved. The result for node 2
is analogous.)

3. The basis corresponding to ỹ and s̃ is B = {1, 4}. Let y = ỹ and s = s̃. It is
straightforward to verify that BTy = cB and s = c − ATy ≥ 0. Hence, y and s are
dual feasible. The basic variables are given by(

1 1
−2 1

)(
x1

x4

)
=

(
2
3

)
,

1
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which gives x1 = −1/3, x4 = 7/3. As x1 < 0, the dual solution is not optimal.
Consequently, since x1 < 0, x1 becomes nonbasic, and as x1 is the first basic variable,
the step in the y-direction is given by

(
1 −2
1 1

)(
q1

q2

)
=

(
−1

0

)
,

which gives q1 = −1/3, q2 = 1/3. With y ← y + αq, dual feasibility requires
s← s + αη, with ATq + η = 0 and s + αη ≥ 0. Consequently, the nonnegativity of s
requires s− αATq ≥ 0, i.e.,
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 .

The maximum value of α is given by αmax = 3/2 making component 2 of s− αATq
zero, so that the new basis becomes B = {2, 4}. The basic variables are given by

(
1 1
3 1

)(
x2

x4

)
=

(
2
3

)
,

which gives x2 = 1/2, x4 = 3/2. As x ≥ 0, an optimal solution has been obtained.
Together with y +αmaxq and s−αmaxA

Tq the primal and dual optimal solutions are
given by

x =
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)
and s =
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 .

4. The suggested initial extreme points v1 = (0 2 − 1 0)T and v2 = (0 2 0 2)T give
the initial basis matrix

B =

(
2 0
1 1

)
.

The right-hand side in the master problem is b = (1 1)T . Hence, the basic variables
are given by

(
α1

α2

)
=

(
2 0
1 1

)−1(
1
1

)
=

(
1
2
1
2

)
.
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The cost of the basic variables are given by (cTv1 cTv2) = (−8 − 6). Consequently,
the simplex multipliers are given by

(
y1

y2

)
=

(
2 1
0 1

)−1(
−8
−6

)
=

(
−1
−6

)
.

By forming cT − y1A = (1 − 3 0 0) we obtain the subproblem

6 + minimize x1 − 3x2

subject to −2 ≤ 2x1 − x2 ≤ 2,
−2 ≤ 2x1 + x2 ≤ 2,
−2 ≤ 2x3 − x4 ≤ 2,
−2 ≤ 2x3 + x4 ≤ 2.

The resulting optimal solution is given by x1 = 0 and x2 = 2. The values of x3 and
x4 can be chosen as any extreme point of S. Consequently, the optimal value of the
subproblem is zero, and the original problem has been solved. The optimal solution
x∗ is given by

x∗ = v1α1 + v3α3 =
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5. (a) For a given u ≥ 0, we obtain

ϕ(u) = −Tu+ minimize
m∑

i=1

n∑
j=1

(cij + utij)xij

subject to
n∑

j=1

xij = ai, i = 1, . . . ,m,

m∑
i=1

xij = bj , j = 1, . . . , n,

xij ∈ {0, 1}, i = 1, . . . ,m, j = 1, . . . , n.

This is a transportation problem, which may be solved as a linear program.
A subgradient to ϕ(u) at u is given by

−T +
m∑

i=1

n∑
j=1

tijxij(u).

(b) We obtain

ϕ(u) =
∑m

i=1 aivi +
∑n

j=1 bjwj+ minimize
m∑

i=1

n∑
j=1

(cij − vi − wj)xij

subject to
m∑

i=1

n∑
j=1

tijxij ≤ T,

xij ∈ {0, 1}, i = 1, . . . ,m, j = 1, . . . , n,
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This is a knapsack problem.
A subgradient to ϕ(v, w) at (v, w) is given by

a1 −
∑n

j=1 x1j(v, w)
...

am −
∑n

j=1 xmj(v, w)
b1 −

∑m
i=1 xi1(v, w)

...
bn −

∑m
i=1 xin(v, w)


(c) The first relaxation gives a transportation problem, where the integer require-

ment on x may be relaxed without altering the problem. Hence, the bound
from the first relaxation is identical to the bound from an LP-relaxation. The
second requirement gives a knapsack problem. Since the Lagrangian dual is al-
ways at least as good as the LP relaxation, we therefore expect the dual based
on the second relaxation to give a better bound.


