
SF2812 Applied linear optimization, final exam
Thursday October 21 2010 14.00–19.00

Brief solutions

1. (See the course material.)

2. As x̂j > 0, j = 1, 2, 3, 5, the active constraints at x̂ are given by


3 1 −1 0 0
2 2 0 −1 0
1 3 0 0 −1
0 0 0 1 0





x̂1

x̂2

x̂3

x̂4

x̂5


=


12
16
16
0

 .

These constraints remain active for x̂ + αp, where p satisfies


3 1 −1 0 0
2 2 0 −1 0
1 3 0 0 −1
0 0 0 1 0





p1

p2

p3

p4

p5


=


0
0
0
0

 .

From the given hint we obtain p = (1 − 1 2 0 − 2)T . The additional requirement
x̂ + αp ≥ 0 gives

3
5
2
0
2


+ α



1
−1

2
0

−2


≥



0
0
0
0
0


.

It follows that x̂+αp ≥ 0 for −1 ≤ α ≤ 1. In addition, it holds that cTp = 0, so that
x̂ + αp has the same objective function value as x̂ for all α. By taking the limiting
values of α, we get two new points at which five constraints are active, namely

x(1) = x̂− p =



2
6
0
0
4


, x(2) = x̂ + p =



4
4
4
0
0


.

1
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As there are five active constraints at these points, we expect them to be basic
feasible solutions. By assuming that x1, x2 and x5 are basic variables, we may
compute y and s from BTy = cB, s = c−ATy, i.e.,

3 2 1
1 2 3
0 0 −1




y1

y2

y3

 =


−1

1
0

 ,

with solution y = (−1 1 0)T , so that s = c − ATy = (0 0 0 1 0)T . As s ≥ 0,
we have verified optimality of x(1), and hence x̂ and x(2) are optimal as well. It is
straightforward to verify that x(2) is also a basic feasible solution at which x1, x2

and x3 are basic variables.

Comment: Note that all active constraints at x̂ must be considered when contructing
p. It is not sufficient to require Ap = 0. Assume, for example, that c = 0. Then all
three directions suggested in the hint satisfy Ap = 0, cTp = 0. However, as x̂4 = 0,
we must in addition have p4 = 0 to be able to take steps in both directions along
p, and obtain two new points with one more contraint active. The first and third
directions given in the hint only allow a nonzero step in one direction, and the active
constraint x4 = 0 becomes inactive. Hence, maximum steps along these directions
would in each case create a new point with four active constraints. Then, we would
face exactly the same situation as at x̂, and no progress towards a basic feasible
solution would have been made.

3. (a) If we introduce dual variables y, associated with Ax− b = 0, and vi, associated
with piTix + piWiui − pihi = 0, i = 1, . . . , N , the dual may be written as

(Dp)
maximize bTy +

N∑
i=1

pih
T
i vi

subject to ATy +
∑N

i=1 piT
T
i vi ≤ c,

piW
T
i vi ≤ pidi, i = 1, . . . , N.

(Note that the constraint piW
T
i vi ≤ pidi can be simplified to W T

i vi ≤ di.)
(b) As di ≥ 0, i = 1, . . . , N , it follows that y = y∗, vi = 0, i = 1, . . . , N , gives

ATy +
N∑

i=1

piT
T
i v = ATy∗ ≤ c,

piW
Tvi = 0 ≤ pidi, i = 1, . . . , N.

Hence, y = y∗, vi = 0, i = 1, . . . , N , gives a feasible solution to (Dp).
(c) Problem (P ) is a relaxation of (Pp). Both requirements for relaxation are

fulfilled: (i) The feasible region of (Pp) is a subset of the feasible region of (P ),
and (ii) pid

T
i ui ≥ 0, i = 1, . . . , N , holds in (Pp) as pi > 0, di ≥ 0 and ui ≥ 0.

Consequently, it follows that optval(Pp) ≥ optval(P ).
(d) We have y = y∗, vi = 0, i = 1, . . . , N feasible to (DP ) with objective func-

tion value bTy∗. As (Pp) is feasible, it follows that optval(Dp) is bounded, so
that optval(Pp) = optval(Dp) ≥ bTy∗ = optval(D) = optval(P ), where strong
duality for linear programming has been used.
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4. (a) The dual objective ϕ(v) is the optimal solution of

minimize −x1 − 3x3 − x4 + v1(x1 + x2 − 1) + v2(x3 + x4 − 1)

subject to 4x1 + 5x2 + 6x3 + 7x4 ≤ 10, xj ∈ {0, 1}, j = 1, . . . , 4,

= −v1 − v2 −maximize (1− v1)x1 − v1x2 + (3− v2)x3 + (1− v2)x4

subject to 4x1 + 5x2 + 6x3 + 7x4 ≤ 10,

xj ∈ {0, 1}, j = 1, . . . , 4.

In particular, for v = v̂, we obtain

ϕ(v̂) = −3−maximize − x2 + x3 − x4

subject to 4x1 + 5x2 + 6x3 + 7x4 ≤ 10,

xj ∈ {0, 1}, j = 1, . . . , 4.

It follows that x2 = 0 and x4 = 0 in all optimal solutions, since the cor-
responding objective function coefficients are negative in the maximization
problem. Hence, we obtain two optimal solutions, x(1)(v̂) = (0 0 1 0)T and
x(2)(v̂) = (1 0 1 0)T with ϕ(v̂) = −4.

(b) We obtain two subgradients s(1) and s(2) to ϕ at v̂ by evaluating the relaxed
constraints with reversed sign at x(1)(v̂) and x(2)(v̂) respectively, as

s(1) = −

 1− x
(1)
1 (v̂)− x

(1)
2 (v̂)

1− x
(1)
3 (v̂)− x

(1)
4 (v̂)

 =

(
−1

0

)
,

s(2) = −

 1− x
(2)
1 (v̂)− x

(2)
2 (v̂)

1− x
(2)
3 (v̂)− x

(2)
4 (v̂)

 =

(
0
0

)
.

(c) As s(2) = 0, it follows that v̂ is optimal to the dual problem.

5. As W/w1 = 41
3 , the cut patterns with w1-rolls only is given by (4 0 0)T . The two

other analgous cut patterns are given by (0 2 0)T and (0 0 2)T .

Consequently, we obtain A1 = (4 0 0)T , A2 = (0 2 0)T and A3 = (0 0 2)T , so that

B =


4 0 0
0 2 0
0 0 2

 , xB = B−1b =


10
45
20

 , y = B−Te =


1
4
1
2
1
2

 ,

with e = (1 1 1)T . As y ≥ 0 no slack variables enter the basis.

We obtain the subproblem

1 − 1
4maximize α1 + 2α2 + 2α3

subject to 3α1 + 5α2 + 7α3 ≤ 14,
αi ≥ 0, integer, i = 1, 2, 3.
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We may enumerate the feasible solutions for this small problem to conclude that
the optimal solutions to the subproblem are given by α1 = 1, α2 = 2, α3 = 0, and
α1 = 3, α2 = 1, α3 = 0, with optimal value -1/4. As suggested in the statement, we
let A4 = (1 2 0)T with

pB = −B−1A4 =


−1

4

−1
0

 .

The minimum ratio occurs for αmax = 40, when the first basic variable becomes zero,
so that x1 leaves the basis. Hence,

B =
(

A4 A2 A3

)
=


1 0 0
2 2 0
0 0 2

 ,

so that

xB =


x4

x2

x3

 =


40
5

20

 , y = y = B−Te =


0
1
2
1
2

 ,

with e = (1 1 1)T . As y ≥ 0 no slack variables enter the basis.

We obtain the subproblem

1 − 1
2maximize α2 + α3

subject to 3α1 + 5α2 + 7α3 ≤ 14,
αi ≥ 0, integer, i = 1, 2, 3.

We may enumerate the feasible solutions for this small problem to conclude that the
optimal value of the subproblem is zero. Hence, the linear program has been solved.

However, as it so happens that xB is integer valued, the original problem has been
solved as well. An optimal solution to the original problem is thus given by cutting
40 W -rolls according to cut pattern (1 2 0)T , 5 W -rolls according to cut pattern
(0 2 0)T and 20 rolls according to cut pattern (0 0 2)T .

(Note that this is very special. In general xB will not take on integer values.)


