
SF2812 Applied linear optimization, final exam
Wednesday June 8 2016 8.00–13.00

Brief solutions

1. (a) There is at least one optimal solution, which is integer valued. However, if the
optimal solution is nonunique, there will also be noninteger optimal solutions.

(b) Since X̂ is nonnegative, summation of rows and columns of X̂ shows that X̂ is
feasible. If we let the matrix S denote the dual slacks, i.e., sij = cij − ûi − v̂j ,
then

S =

(
0 0 0

1 0 0

)
.

Consequently, S has nonnegative components. In addition, complementarity
holds, since x̂ijsij = 0, i = 1, 2, j = 1, 2, 3. This means that we have optimal
solutions to the two problems.

(c) The nonzero components of the given W correspond to strictly positive com-
ponents of X̂. Since W has row sum as well as column sum zero, it follows
that X̂ +αW is optimal as long as X̂ +αW is nonnegative. The most limiting
positive and negative values of α are −0.5 and 1.5 respectively. These values
correspond to two integer valued optimal solutions:

X̂ − 0.5W =

(
6 2 0

0 3 2

)
and X̂ + 1.5W =

(
6 0 2

0 5 0

)
.

(d) Since X̂ is not an extreme point, it is not provided as a solution by the simplex
method.

2. (See the course material.)

3. (a) With X = diag(x) and S = diag(s), the linear system of equations takes the
form  A 0 0

0 AT I

S 0 X


 ∆x

∆y

∆s

 = −

 Ax− b
ATy + s− c
XSe− µe

 ,

for a suitable value of the barrier parameter µ. We may for example let µ =
xTs/n = 5. Insertion of numerical values gives

1 1 1 1 0 0 0 0 0 0

1 −1 1 −1 0 0 0 0 0 0

0 0 0 0 1 1 1 0 0 0

0 0 0 0 1 −1 0 1 0 0

0 0 0 0 1 1 0 0 1 0

0 0 0 0 1 −1 0 0 0 1

1 0 0 0 0 0 4 0 0 0

0 2 0 0 0 0 0 3 0 0

0 0 3 0 0 0 0 0 2 0

0 0 0 4 0 0 0 0 0 1





∆x1

∆x2

∆x3

∆x4

∆y1

∆y2

∆s1

∆s2

∆s3

∆s4



=


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

.
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(b) We would compute x(1), y(1) and s(1) as x(1) = x(0) + α∆x(0), y(1) = y(0) +
α∆y(0), s(1) = s(0) + α∆s(0), where α is a positive steplength. In a pure
Newton step, α = 1, but we must also maintain x(1) > 0 and s(1) > 0. We may
compute αmax as the largest step α for which x + α∆x ≥ 0 and s + α∆s ≥ 0.
We may then let α = min{1, 0.99αmax} to ensure positivity of x(1) > 0 and
s(1) > 0. (In order to get a convergent method, some additional condition on
α ensuring proximity to the barrier trajectory may need to be imposed.)

4. (a) For a given nonnegative u, the resulting Lagrangian relaxed problem gives the
dual objective function ϕ(u) as

ϕ(u) = −8u+ minimize (3u− 5)x1 + (6u− 7)x2 + (7u− 10)x3

subject to −x1 − 2x2 − 3x3 ≥ −3,
xj ∈ {0, 1}, j = 1, . . . , n.

There are only five feasible solutions to the relaxed problem, (0 0 0)T , (1 0 0)T ,
(0 1 0)T , (0 0 1)T and (1 1 0)T . By enumerating these solutions, we obtain

ϕ(u) = min{−8u,−5u− 5,−2u− 7,−u− 10, u− 12}.

The dual problem may be illustrated graphically as:

It can be seen that the optimal solution is 1 and the optimal value is -11.

(b) Since the Lagrangian dual gives a relaxation whose bound is always at least
as good as the linear programming relaxation, the optimal value of the linear
programming relaxation problem cannot be greater than -11.

5. (a) For the given cut patterns, we obtain

B =

 4 0 0

0 2 0

0 0 1

 , xB = B−1b =

 15

25

50

 , y = B−Te =


1
4
1
2

1

 ,

with e = (1 1 1)T . As y ≥ 0 no slack variables enters the basis.
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The subproblem is given by

1 − 1
4maximize α1 + 2α2 + 4α3

subject to 3α1 + 5α2 + 9α3 ≤ 12,
αi ≥ 0, integer, i = 1, 2, 3.

We may enumerate the feasible solutions for this small problem to conclude
that the optimal value of the subproblem is α∗ = (1 0 1)T with optimal value
−1/4. Hence, a4 = (1 0 1)T and the maximum step is given by

0 ≤ x = B−1b− ηB−1a4 =

 15

25

50

− η


1
4

0

1

 .

Hence, ηmax = 50 and x3 leaves the basis, so that the basic variables are given
by x1 = 5/2, x2 = 25 and x4 = 50. The reduced costs are given by

y = B−Te =

 4 0 0

0 2 0

1 0 1


−1 1

1

1

 ,

which gives y1 = 1/4, y2 = 1/2 and y3 = 3/4.

The subproblem is given by

1 − 1
4maximize α1 + 2α2 + 3α3

subject to 3α1 + 5α2 + 9α3 ≤ 12,
αi ≥ 0, integer, i = 1, 2, 3.

We may enumerate the feasible solutions for this small problem to conclude
that the optimal value is zero, so that the linear program has been solved.
The optimal solution is x1 = 5/2, x2 = 25 and x4 = 50, with a1 = (4 0 0)T ,
a2 = (0 2 0)T and a4 = (1 0 1)T .

(b) The solution given by the linear programming relaxation may be rounded up
to give a feasible solution x̃ to the original problem. In this case, x̃1 = 3,
x̃2 = 25 and x̃4 = 50. This gives a total of 78 W -rolls. The linear programming
relaxation gives 77.5 W -rolls, which is a lower bound for the original problem.
Since the number of W -rolls is integer valued, we conclude that 78 is a lower
bound, so that x̃ in fact is an optimal solution to the original problem. The
optimal solution is therefore to use 78 W -rolls, with 3 rolls cut according to
pattern (4 0 0)T , 25 rolls cut according to pattern (0 2 0)T and 50 rolls cut
according to pattern (1 0 1)T .

(Note that this is very special. In general one can not expect to obtain an
optimal integer solution in this way.)


