
SF2822 Applied nonlinear optimization, final exam
Wednesday June 9 2010 8.00–13.00

Brief solutions

1. (a) The first-order necessary optimality conditions for (EQP ) are given by Hx+c =
0. As H is nonsingular, there is a unique solution given by x1 = (1 1 1)T .
The matrix H is not positive semidefinite, since the leading two-by-two prin-
cipal submatrix is indefinite. With d = (1 − 1 0)T , we obtain dTHd = −2.
Consequently, x1 does not satisfy the second-order necessary optimality condi-
tions to (EQP ).
Consequently, there is no point that satisfies the second-order necessary opti-
mality conditions for (EQP ).

(b) The first-order necessary optimality conditions for (EQP ) are given by(
H AT

A 0

)(
x

−λ

)
=

(
−c

b

)

which has unique solution x2 = (0 3 1)T , λ2 = 3. We may for example form a
matrix Z whose columns form a basis for null(A) as

Z =


0 0
1 0
0 1

 ,

for which ZTHZ = I. Hence, x2 satisfies the second-order necessary optimality
conditions.

(c) Since A has only one row, a local minimizer to (IQP ) has to be a local minimizer
to (QP ) or a local minimizer to (EQP ). Since x1 does not satisfy the second-
order necessary optimality conditions to (QP ), it is not a local mininimizer
to (QP ). Hence, it is not a local minimizer to (IQP ). Since x2 satisfies the
second-order sufficient optimality conditions to (EQP ), it is a local minimizer
to (EQP ). In addition, since λ2 > 0, it is also a local minimizer to (IQP ).

(d) Let q(x) = 1
2xTHx+cTx. With d given as in (1a), it follows that q(x1 +αd) and

q(x1−αd) tend to minus infinity as α →∞. Since we have only one constraint,
at least one of x1 + αd and x1 − αd must remain feasible in (IQP ) as α →∞.
We conclude that no global minimizer can exist.

2. No constraints are active at the initial point. Hence, the working set is empty, i.e.,
W = ∅. Since H = I and c = 0, we obtain p(0) = −(Hx(0) + c) = −x(0). The
maximum steplength is given by

αmax = min
i:aT

i p(0)<0

aT
i x

(0) − bi

−aT
i p

(0)
=

2
5
,

1
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where the minimium is attained for i = 2. Consequently, α(0) = 2/5 so that

x(1) = x(0) + α(0)p(0) =

(
5
0

)
+

2
5

(
−5

0

)
=

(
3
0

)
,

with W = {2}. The solution to the corresponding equality-constrained quadratic
progam is given by


1 0 1
0 1 2
1 2 0




p
(1)
1

p
(1)
2

−λ
(2)
1

 = −


3
0
0


We obtain

p(1) =
(
−12

5
6
5

)T
.

The maximum steplength is given by

αmax = min
i:aT

i p(0)<0

aT
i x

(0) − bi

−aT
i p

(0)
=

5
6
,

where the minimium is attained for i = 1. Consequently, α(1) = 5/6 so that

x(2) = x(1) + α(1)p(1) =

(
3
0

)
+

5
6

(
−12

5
6
5

)
=

(
1
1

)
,

with W = {1, 2}. The solution to the corresponding equality-constrained quadratic
progam is given by


1 0 1 2
0 1 2 1
1 2 0 0
2 1 0 0




p
(2)
1

p
(2)
2

−λ
(3)
1

−λ
(3)
2

 = −


1
1
0
0

 .

We obtain

p(2) =
(

0 0
)T

, λ(3) =
(

1
3

1
3

)T
.

As p(2) = 0 and λ(3) ≥ 0, the optimal solution has been found. Hence, x(2) is optimal.

3. If the problem is put on the form

minimize f(x)

subject to g(x) ≥ 0, x ∈ IR2,
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we obtain

∇f(x)T =
(

x1 + x2 + 5
2 x1 + x2 − 1

2

)
, ∇g(x)T =


x2 x1

1 0
0 1

 ,

∇2
xxL(x, λ) =

(
1 1− λ1

1− λ1 1

)
.

With x(0) = (1
2 2)T and λ

(0)
1 = 1, the first QP-problem becomes

minimize 1
2

(
p1 p2

)( 1 0
0 1

)(
p1

p2

)
+
(

5 2
)( p1

p2

)

subject to


2 1

2

1 0
0 1


(

p1

p2

)
≥


0

−1
2

−2

 .

The optimal solution of the QP-problem is given by the feasible point which is
closest, in 2-norm, to (−5 − 2)T , i.e., p(0) = ( 3

17 − 12
17)T with Lagrange multipliers

λ(1) = (44
17 0 0)T . Thus, we have λ(1), and x(1) is given by x(1) = x(0) + p(0) = (23

34
22
17)T .

4. (See the course material.)

5. (a) By adding an additional variable z, we may rewrite (P ) as the nonlinear pro-
gram

(NLP )
minimize z

subject to z − fi(x) ≥ 0, i = 1, . . . , n,
x ∈ IRn, z ∈ IR.

As fi, i = 1, . . . , n, are convex on IRn, (NLP ) is a convex problem. Conse-
quently, a local minimizer to (NLP ) is also a global minimzier.
For a given positive µ, a barrier transformation of the constraints z−fi(x) ≥ 0,
i = 1, . . . , n, gives the barrier function Bµ(z, x) on the form

Bµ(z, x) = z − µ
n∑

i=1

ln(z − fi(x)).

Minimizing Bµ(z, x) gives (NLPµ), as required.
(b) The gradient of Bµ(z, x) is given by

∇Bµ(z, x) =

 1− µ
∑n

i=1
1

z−fi(x)

µ
∑n

i=1
1

z−fi(x)∇fi(x)

 .

The first-order optimality conditions for minimizing Bµ(z, x) are given by∇Bµ(z, x) =
0. By letting λi = 1/(z − fi(x)), i = 1, . . . , n, we obtain the primal-dual non-
linear equations as

1−
∑n

i=1 λi = 0,



Page 4 of 4 Solutions to final exam June 9 2010 SF2822

∑n
i=1∇fi(x)λi = 0,

(z − fi(x))λi = µ, i = 1, . . . , n.

As (NLPµ) is a convex optimization problem, Bµ(z, x) is a convex function for
z, x such that z − fi(x) > 0, i = 1, . . . , n. To see this directly, we may form

∇2Bµ(z, x) =

 0 0
0 µ

∑n
i=1

1
(z−fi(x))2

∇fi(x)∇fi(x)T

 ,

which is positive semidefinite for z, x such that z − fi(x) > 0, i = 1, . . . , n.
Consequently, a solution to ∇Bµ(z, x) = 0 corresponds to a global minimizer
of (NLPµ). Finally, the primal-dual nonlinear equations are equivalent to
∇Bµ(z, x) = 0.


