
SF2822 Applied nonlinear optimization, final exam
Saturday May 28 2011 9.00–14.00

Brief solutions

1. (a) Both constraints are active at x∗. The first-order necessary optimality condi-
tions then require the existence of nonnegative λ∗1 and λ∗2 such that
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 λ∗2.

There is a unique solution with λ∗1 = 1 and λ∗2 = 2, so that x∗ satisfies the
first-order necessary optimality conditions together with λ∗.

(b) Both lagrange multipliers are strictly positive, so that strict complementarity
holds. A matrix Z+(x∗) whose columns form a basis for the nullspace of the
matrix formed of the constraint gradients of the constraints with positive La-
grange multipliers, evaluated at x∗, is given by Z+(x∗) = (0 1 0)T . In addition
to the first-order necessary optimality conditions, the second-order sufficient
optimality conditions require

Z+(x∗)T
(
∇2f(x∗)− λ∗2∇2g(x∗)

)
Z+(x∗) � 0,

which gives

2− 2∇2g(x∗)22 > 0.

Hence, x∗ is a local minimizer if ∇2g(x∗)22 < 1.

(c) Since conditions on f are only known at x∗, it is not sufficient to put any
conditions on ∇2g(x) to ensure global minimality.

2. (See the course material.)

3. (a) In an interior method, we need to ensure that the constraint, on which the
barrier transformation is applied, is satisfied with strict inequality. Hence, if
the barrier is applied on g(x) ≥ 0, we must that g(x(k)) > 0 for all iterates k.
Since g(x(0)) = −4 < 0, some reformulation is needed.

(b) The Newton step ∆x, ∆s, ∆λ is given by
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In our case we get
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The initial value of s should be strictly positive. For example, let s(0) = 1/2.
Then, for the first iteration we obtain
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(c) The next iterate is given by x(1) = x(0) + α(0)∆x
(0)
1 , s(1) = s(0) + α(0)∆s(0),

λ(1) = λ(0) + α(0)∆λ(0), where α(0) is given by some approximate linesearch.
The steplength α(0) must be chosen such that s(0) + α(0)∆s(0) > 0 and λ(0) +
α(0)∆λ(0) > 0.

4. The QP subproblem becomes

minimize 1
2pT∇2

xxL(x(0), λ(0))p +∇f(x(0))Tp

subject to ∇gi(x(0))Tp ≥ −gi(x(0)), i = 1, 2, 3.

Insertion of numerical values gives

min p2
1 + p2

2

subject to p1 + p2 ≥ −2,
p1 ≥ 1,
p2 ≥ 1.

If we let p(0) denote the optimal solution of the QP subproblem, we obtain x(1) =
x(0) + p(0). We obtain λ(1) as the Lagrange multipliers of the QP subproblem.

The quadratic program is convex, and the optimal solution is given by p(0) = (1 1)T ,
so that x(2) = x(0)+p(0) = (1 1)T . The Lagrange multiplier of the quadratic program
is given byλ(1) = (0 2 2)T .

5. (a) In the first iteration, constraint x1 + x2 ≥ −3 is kept active. We obtain x(1) =
(−1 − 2)T , with λ

(1)
1 = −5. Verification gives Hx(1) + c = A1λ

(1)
1 and A1x

(1) =
b1. Since λ

(1)
1 = −5 < 0, the first constraint is deleted from the working set.

In the second iteration, no constraints are active. The search direction is given
by Hp(1) = −(Hx(1) + c), which leads towards the unconstrained minimizer.
The step is limited by constraint 4, −x1 − x2 ≥ −3, at the point x(2) = (1 2)T .
Constraint 4 is added to the working set.
In the third iteration, we obtain a zero step to the minimizer, so that x(3) =
x(2) = (1 2)T . The Lagrange multiplier is given by λ

(3)
4 = 2, so that the
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global minimizer has been found. Verification gives Hx(3) + c = A4λ
(3)
4 and

A4x
(3) = b4.

(b) To be precise, the first statement should be that there is one iteration where
the constraint x1 +x2 ≥ −3 has been deleted and the constraint −x1−x2 ≥ −3
is added. Then, AF’s claim is true. The feature which makes this happen is
that we delete one constraint and add one constraint, where the gradients of
these constraints are parallel (in opposite directions). In our case, A4 = −A1,
constraint 1 is deleted in the first iteration and constraint 4 is added in the
second iteration.
We have Hx(1) + c = A1λ

(1)
1 , with λ

(1)
1 < 0, and Hp(1) = −(Hx(1) + c). Hence,

H(x(1) + αp(1)) + c = Hx(1) + c + αHp(1)

= (1− α)(Hx(1) + c) = (1− α)A1λ
(1)
1 .

Note that since A4 = −A1, we obtain

H(x(1) + αp(1)) + c = (1− α)A1λ
(1)
1 = (1− α)A4(−λ

(1)
1 ).

Consequently, for the value of α for which constraint A4x ≥ b4 becomes active,
we have a minimizer with respect to this constraint as an equality, with La-
grange multiplier −(1−α)λ(1)

1 . As α < 1 and λ
(1)
1 < 0, this multiplier is positive.

We are thus optimal with respect to the inequality constraint A4x ≥ b4.


