
SF2822 Applied nonlinear optimization, final exam
Monday May 20 2013 8.00–13.00

Brief solutions

1. (a) If p is a nonzero vector in IR4, then

pTHp = pT (I + eeT )p = pTp+ (pTe)2 ≥ pTp > 0.

Hence, H is positive definite.

(b) We may write A = (N B), where B = I and N = −e, where e is the vector of
ones. Then, a matrix Z whose columns form a basis for the nullspace of A is
given by

Z =

(
I

−B−1N

)
=

(
1

e

)
=


1

1

1

1

 .
(c) The step to the minimizer is given by ZpZ , where

ZTHZpZ = −ZT(Hx̄+ c).

Insertion of numerical values gives 20pZ = 20, i.e., pZ = 1. Hence the optimal
x is given by

x = x̄+ ZpZ =


0

1

1

1

 .
The Lagrange multipliers are then given by Hx+ c = ATλ, i.e.,

−2

−1

−1

4

 =


−1 −1 −1

1 0 0

0 1 0

0 0 1



λ1

λ2

λ3

 ,
i.e., λ = (−1 − 1 4)T .

(d) Since H is positive definite, the optimal solution x is unique. As A has full row
rank, the Lagrange multiplier vector λ is unique. Since no component of λ is
zero, no constraint can be omitted without x being changed.

2. Constraint 3 is in the working set at the initial point, i.e., W = {3}. With H = I
and c = 0 we obtain(

H ATW
AW 0

)(
p(0)

−λ(0)W

)
= −

(
Hx(0) + c

0

)
.

1
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Insertion of numeric values gives
1 0 0

0 1 1

0 1 0




p
(0)
1

p
(0)
2

−λ(1)3

 = −


8

0

0


We obtain

p(0) =
(
−8 0

)T
, λ(1) =

(
0 0 0

)T
.

The maximum steplength is given by

αmax = min
i:aTi p

(0)<0

aTi x
(0) − bi
−aTi p(0)

=
1

4
,

where the minimium is attained for i = 1. Consequently, α(0) = 1/4 so that

x(1) = x(0) + α(0)p(0) =

(
8

0

)
+

1

4

(
−8

0

)
=

(
6

0

)
,

with W = {1, 3}. The solution to the corresponding equality-constrained quadratic
progam is given by

1 0 1 0

0 1 1 1

1 1 0 0

0 1 0 0




p
(1)
1

p
(1)
2

−λ(2)1

−λ(2)3

 = −


6

0

0

0

 .

We obtain

p(1) =
(

0 0
)T

, λ(2) =
(

6 0 −6
)T

.

As p(1) = 0, it follows that x(2) = x(1) and the corresponding equality-constrained

problem has been solved. However, since λ
(2)
3 < 0, constraint 3 is deleted so that

W = {1}. The solution to the corresponding equality-constrained quadratic progam
is given by

1 0 1

0 1 1

1 1 0




p
(2)
1

p
(2)
2

−λ(3)1

 = −


6

0

0

 .
We obtain

p(2) =
(
−3 3

)T
, λ(3) =

(
3 0 0

)T
.

The maximum steplength is given by

αmax = min
i:aTi p

(2)<0

aTi x
(2) − bi
−aTi p(2)

=
4

3
,
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where the minimium is attained for i = 2. Since αmax > 1, we let α(2) = 1 so that

x(3) = x(2) + p(2) =

(
6

0

)
+

(
−3

3

)
=

(
3

3

)
.

Since λ(3) ≥ 0, the optimal solution has been found.

3. (a) The problem (QP ) is a convex quadratic program. The primal part of the
trajectory is obtained as minimizer to the barrier-transformed problem

(Pµ) min 1
2x

2
1 + 1

2x
2
2 − µ ln(x1 − 1)

under the implicit condition that x1 + 1 > 0. The first-order optimality condi-
tions of (Pµ) gives

x1(µ)− µ

x1(µ)− 1
= 0,

x2(µ) = 0.

Since (QP ) is a convex problem, (Pµ) is an unconstrained convex problem,
taking into account the implicit constraint x1 − 1 > 0. Therefore, the first-
order necessary optimality conditions are sufficient for global optimality.

The first-order optimality conditions give x2(µ) = 0, and x1(µ) is given by

x21(µ)− x1(µ)− µ = 0,

i.e.,

x1(µ) =
1

2
+

√
1

4
+ µ,

where the plus sign has been chosen for the square root to enforce x1(µ)−1 > 0.

The dual part of the trajectory, i.e. λ(µ), is normally given by λi(µ) = µ/gi(x(µ)),
i = 1, . . . ,m. Here we only have one constraint, so

λ(µ) =
µ

x1(µ)− 1
=

µ

−1
2 +

√
1
4 + µ

=
1

2
+

√
1

4
+ µ.

(b) As µ → 0 it follows that x(µ) → (1 0)T and λ(µ) → 1. Let x∗ = (1 0)T and
λ∗ = 1. Then x∗ and λ∗ satisfy the first-order optimality conditions of (QP ).
Since (QP ) is a convex problem, this is sufficient for global optimality of (QP ).

(c) We have

‖x(µ)− x∗‖2 = −1

2
+

√
1

4
+ µ = −1

2
+

1

2

√
1 + 4µ = µ+ o(µ).

This is as expected. We would expect ‖x(µ) − x∗‖2 to be of the order µ near
an optimal solution where regularity holds.

4. (a) The point x(0) is not feasible, as g2(x
(0)) < 0. Hence, it cannot be a local

minimizer.
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(b) The QP subproblem becomes

minimize 1
2p
T∇2

xxL(x(0), λ(0))p+∇f(x(0))Tp

subject to ∇gi(x(0))Tp ≥ −gi(x(0)), i = 1, 2, 3.

Insertion of numerical values gives

min 1
2p

2
1 + 1

2p
2
2

subject to p1 + p2 ≥ −2,
p1 ≥ 1,
p2 ≥ −1.

If we let p(0) denote the optimal solution of the QP subproblem, we obtain x(1) =
x(0) + p(0). We obtain λ(1) as the Lagrange multipliers of the QP subproblem.

The quadratic program is convex, and the optimal solution is given by p(0) =
(1 0)T , so that x(2) = x(0) + p(0) = (1 0)T . The Lagrange multiplier of the
quadratic program is given byλ(1) = (0 1)T .

5. (See the course material.)


