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SF2822 Applied nonlinear optimization, final exam
Thursday August 21 2014 14.00-19.00
Brief solutions

We have

f(z) = s27 + sx3, g(x) = o1 + x9 + 23 + 2,

_ I . 1
Vf<x>—<x2>, v9<x>—<1+2m>,
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(a) Insertion of numerical values in the expressions above gives the first QP-problem
according to

min %p% + %pg
subject to p1 + po = —2.

This is a convex QP-problem with a globally optimal solution given by

pl_AZOa
p2_)\:0a
p1+p2 = —2.

The solution is given by p; = —1, p» = —1 and A = —1, which agrees with the
printout from the SQP-solver.

(b) We can see that V2 f(z) is positive definite and V2g(x) is positive semidefinite,
independently of x. Moreover A is non-positive in all iterations. This implies
that the solution to each QP subproblem is optimal also for the case when the
equality constraint is changed to a less than or equal constraint. Hence, the
iterates would not change at all if the constraint was changed as suggested.

(c) The inequality-constrained problem is a convex problem, and in addition a
relaxation of the original problem. Hence we get convergence towards a global
minimizer of this problem, which is also a global minimizer of (NLP).

(a) The problem (QP) is a convex quadratic program. The primal part of the
trajectory is obtained as minimizer to the barrier-transformed problem

(Py) min 2% + 123 — pln(zr + 22 — 2)

under the implicit condition that x1 + x9 — 2 > 0. The first-order optimality
conditions of (P,) gives
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o1(p) +aa(u) —2

These equations are symmetric in 21 (¢) and xo(p). Hence, z1(p) = x2(p). This
means that 2x1(u)? — 221 (p) — o = 0, from which it follows that
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3. (See

(b)

where the plus sign has been chosen for the square root to enforce xi(u) +
x2(p) —2 > 0. Since (P,) is a convex problem, this is a global minimizer.

The dual part of the trajectory, i.e. A(u), is normally given by \; (1) = p/gi(x(p)),
i=1,...,m. Here we only have one constraint, so

p p L1
A(p) = - N T
2 ri(p) +xo(p) —2 VIT+2u—1 2 2 K

As pp — 0 it follows that x(u) — (1 1)T and A(u) — 1. Let 2* = (1 1)T and
X* = 1. Then 2* and X* satisfy the first-order optimality conditions of (QP).
Since (QP) is a convex problem, this is sufficient for global optimality of (QP).

We have

11 1
w1(p) — @) = w2(p) — o = — + S VI+ 20 =Sp+o(p).

This is as expected. We would expect ||z(y) — 2*||2 to be of the order u near
an optimal solution where regularity holds.

the course material.)

The objective function is f(x) = €*! + z122 + 23 — 2z9w3 + 23 — 221 — T2 — 3.
Differentiation gives

erl + 19 — 2 e*t 1 0
Viz)=| o1 +220—-225—-1 |, Vf@)=]| 1 2 -2
—2x9 + 23 — 1 0 -2 2

In particular, Vf(Z) = (0 -1 -1)T. With g(2) = —2% — 23 — 23 + 5 we get
91(Z) = 3, which mean that constraint 1 is not active at . Since V f(Z) # 0,
constraint 2 must be active for T to possibly satisfy the first-order necessary
optimality conditions. These conditions require the existence of a A2 such that
Vf(Z) = a)y and a"Z 4+ 2 = 0 with Xy > 0.
The condition Vf(Z) = aly takes the form

0 aq
-1 = a9 5\2.
-1 as

and it can not be fulfilled with Ao = 0. Hence, Ao > 0, and we obtain a; = 0,
as = asz = —1/5\2. The condition —2/5\2 +2 =0 so that Ay = 1. Hence, a = (0
-1 -7,

Ifa= (0 -1 —1)T, then 7 fulfils the first-order necessary optimality conditions
together with A = (0 1),

As we only have one active linear constraint at £ we obtain

ViLE N =Vif@) =1 2 -2
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Since Ay > 0, we also have that A, (%) = a”, where we can let a’ = (N B) for
B =—-1and N =(0 —1). We then obtain a matrix whose columns form a
basis for the null space of A, (%) as

1
~ I
Z+(SC):<B_1N>= 0o 1f,
0 _

which gives
11
Z(2)'V2f(2)Z4(7) = ( ) 8) ,

which is a positive definite matrix. Hence, x fulfils the second-order sufficient
optimality conditions and is therefore a local minimizer.

5. (a) The function f(y) = y2 has derivative f'(y) = 0 for y < 0 and f'(y) = 2y for
y > 0. Hence, f’(y) is continuous with f’(0) = 0. The second derivative is given
by f”(y) =0 for y < 0 and f”(y) = 2 for y > 0. Hence, f” is discontinuous at
y = 0. As a consequence, the objective function has discontinuous Hessian at
points where plx = u; for some i € U or plz = I; for some i € L.

(b) Consider a fixed z and minimize over y in (QP). We want to show that y; =
(pfx — )4, i €U, and y; = (I; — plz)+, i € L. Assume that plx —u; < 0 for
some i € U. Then, y; = 0, since y; = 0 is the the minimizer of y?. Similarly,
if plz —wu; > 0, the optimal choice of y; is y; = plz — w4, as y? is a strictly
increasing function for y; > 0. Hence, y; = (plx —u;)+, i € U, as required. The
argument for ¢ € £ is analogous.

(¢) We may write the Lagrangian function as
= icL icu icL

for Lagrange multipliers A\; > 0, ¢ € Y U L, and n > 0. Let F; be the matrix
whose rows comprise pl-T, i € T, and analogously for P,. Let subscripts "U" and
"L" respectively denote the vectors with components in the two sets. Also, let
Ay = diag(My), Yy = diag(yy), A = diag(Az), Yz = diag(yc), X = diag(x)
and N = diag(n). For a positive barrier parameter u, the perturbed first-order
optimality conditions may be written

Py — Pide —n =0,
Yyu — u =0,
yec — Az =0,

Ay (yu — Puz 4 uy) = pe,
Ap(ye + Prx — ) = pe,
Nx = pe.



