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Brief solutions

1. As g3(x
∗) < 0 we must have g3(x) ≤ 0.

Since g1(x
∗) = 0, g2(x

∗) = 0, with ∇g1(x∗) and ∇g2(x∗) linearly independent,
it follows that x∗ is a regular point. Hence, the first-order necessary optimality
conditions must hold. We therefore try to find λ1 and λ2 such that
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There is a unique solution given by λ1 = 2 and λ2 = −1. Since λ1 > 0 and λ2 < 0, we
must have g1(x) ≥ 0 and g2(x) ≤ 0 for the first-order necessary optimality conditions
to hold.

We now investigate whether this choice gives a local minimizer. The Jacobian of the
active constraints at x∗ is given by
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Hence,

ZT(∇2f(x∗)− λ1∇2g1(x
∗)− λ2∇2g2(x

∗))Z =
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which is a positive definite matrix. Therefore, x∗ is a regular point at which strict
complementarity holds, and the second-order sufficient optimality hold. Therefore,
x∗ is a local minimizer.

We conclude that x∗ becomes a local minimizer to (NLP ) for the choice g1(x) ≥ 0,
g2(x) ≤ 0 and g3(x) ≤ 0.

2. No constraints are active at the initial point. Hence, the working set is empty, i.e.,
W = ∅. Since H = I and c = 0, we obtain p(0) = −(Hx(0) + c) = −x(0). The
maximum steplength is given by
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where the minimum is attained for i = 1. Consequently, α(0) = 1/4 so that

x(1) = x(0) + α(0)p(0) =
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with W = {1}. The solution to the corresponding equality-constrained quadratic
program is given by
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The maximum steplength is given by
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where the minimum is attained for i = 2. Consequently, α(1) = 5/6 so that

x(2) = x(1) + α(1)p(1) =
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with W = {1, 2}. The solution to the corresponding equality-constrained quadratic
program is given by
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We obtain

p(2) =
(
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)T

, λ(3) =
(

1
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1
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.

As p(2) = 0 and λ(3) ≥ 0, the optimal solution has been found. Hence, x(2) is optimal.

3. We have

f(x) = 2(x1 − 2)2 + (x2 − 1)2 g(x) = 1− x21 − x22 ≥ 0,

∇f(x) =
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The first QP-subproblem becomes

minimize 1
2p
T∇2

xxL(x(0), λ(0))p+∇f(x(0))Tp

subject to ∇g(x(0))Tp ≥ −g(x(0),

Insertion of numerical values gives

minimize 2p21 + p22

subject to −4p1 − 2p2 ≥ 2.

We now utilize the fact that the subproblem is of dimension two with only one
constraint. The subproblem is convex, since it is a quadratic program with positive
definite Hessian. The constraint must be active, since the unconstrained minimizer
p = 0 is infeasible. Hence, we may let p1 = −1/2− p2/2 and minimize
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Setting the derivative to zero gives
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Hence, p2 = −1/3, which gives p1 = −1/3. Evaluating the gradient at the optimal
point of the quadratic program gives
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so that λ = 1/3. Consequently, we obtain
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4. (See the course material.)

5. (a) Problem (NLP ) has the form which we use in the course. The objective func-
tion is convex and the constraint functions of the inequality constraints are
concave. Hence, (NLP ) is a convex problem.

(b) We see by inspection that x∗1 = 0 and x∗2 =
√
ε with both constraints active.

The Lagrangian function for (NLP ) is given by

L(x, λ) = −x2 − (1 + ε− (x1 − 1)2 − x22)λ1 − (1 + ε− (x1 + 1)2 − x22)λ2,

so that

∇xL(x, λ) =

(
2(x1 − 1)λ1 + 2(x1 + 1)λ2

−1 + 2x2λ1 + 2x2λ2

)
.
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Evaluation at x∗ gives

∇xL(x∗, λ) =
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The Lagrange multiplier vector λ∗ is given by ∇xL(x∗, λ∗) = 0, i.e.,(
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For ε > 0, the unique solution is given by λ∗1 = λ∗2 = 1/(4
√
ε). Consequently,

x∗ =

(
0
√
ε

)
, λ∗ =

 1
4
√
ε

1
4
√
ε

 .
(c) We see that

x∗ →
(
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)
, λ∗ →

(
∞
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)
when ε→ 0.

The Jacobian of the constraints is given by
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The rows of A(x∗) are linearly independent for any ε > 0 but they become
closer and closer to linearly dependent as ε → 0 so that for ε = 0 they are
linearly dependent.

This is reflected in the Lagrange multipliers becoming larger and larger as ε→ 0
so that for ε = 0 they do not exist.


