

KTH Matematik

Homework 2 Mathematical Systems Theory, SF2832 Fall 2008

You may use min(3,(your score)/10) as bonus credit on the exam.

1. Consider the pair (C, A), where

$$A = \begin{bmatrix} 0 & 1 \\ a_1 & a_2 \end{bmatrix}$$

$$C = \begin{bmatrix} 1 & 0 \end{bmatrix}.$$

2. You will in this problem derive and investigate a number of realizations for the transfer function

$$R(s) = \begin{bmatrix} \frac{\gamma}{s+1} & \frac{s+2}{s+1} \\ \frac{1}{s+1} & \frac{s+2}{s+1} \end{bmatrix},$$

where $\gamma > 0$ is a constant.

- (b) Is the realization in (a) observable? $\dots (2p)$
- (c) Determine the standard observable realization of R(s). (4p)
- **3.** Suppose the following is a realization of a given r(s):

$$(A,B,C) = \left(\begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 1 & 0 \end{bmatrix} \right)$$

- 4. Consider

$$\dot{x} = Ax + Bu$$
$$y = Cx,$$

where,

$$(A, B, C) = \left(\begin{bmatrix} -1 & 1 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 & 3 & 1 \end{bmatrix} \right)$$

- (b) Is the controlled system BIBO-stable when the initial state is set to zero? (2p)
- (b) Discuss if A being a stable matrix is necessary for BIBO stability......(3p)
- 5. Consider a time-invariant controllable system

$$\dot{x} = Ax + Bu.$$