la) For reference only. Courtesy of Mats Malmberg.
We will prove the necessity by contradiction.
Assume that rank $\left[\begin{array}{c}S[-A \\ C\end{array}\right]<n$ for some s, and that (C, A) is observable. If rank $\left[\begin{array}{c}{[-A} \\ C\end{array}\right]<n$ for some s, then for this $s \exists a \in R A:\left[\begin{array}{c}S I-A \\ C\end{array}\right] a=0$

$$
\begin{aligned}
& \Rightarrow \exists a \in \mathbb{R}^{n}:\left\{\begin{array}{l}
A_{a}=I_{\text {sa }} \\
C a=0
\end{array}\right. \\
& \Rightarrow \Omega a=\left[\begin{array}{c}
C^{\prime} \\
C_{A} \\
\vdots \\
C_{A^{n-1}}
\end{array}\right] a=\left[\begin{array}{c}
C_{a} \\
C_{s} I_{a} \\
\vdots \\
S^{n-1} C_{a}
\end{array}\right]=0
\end{aligned}
$$

Hence $a \in \operatorname{ker} \Omega$
But since Ω is assumed to be observable, $\operatorname{ker} \Omega=\{0\}$
we get a contradiction, thus rank $\left[\begin{array}{c}s \\ -4 \\ C\end{array}\right]=n \quad \forall s \in C$ is a necessary condition for (C, A) to be observable.

$$
3
$$

ib)
Let A and C be defined by the given system.

$$
\text { Then }\left[\begin{array}{c}
s[-A \\
C
\end{array}\right]=\left[\begin{array}{ccccc}
s & -1 & 0 & \cdots & 0 \\
0 & s & -1 & \cdots & 0 \\
\vdots & & \ddots & \ddots & \vdots \\
a_{1} & a_{2} & \cdots & s & a_{n-1} \\
c_{1} & c_{2} & \cdots & c_{n-1} & a_{n}
\end{array}\right]
$$

(C, A) is observable if and only if rank $\left[\begin{array}{c}s T-4 \\ C\end{array}\right]=n, \forall s \in e$
Let $x \in \mathbb{R}^{n}$ be any vector, then

$$
\left[\begin{array}{c}
s I-A \\
C
\end{array}\right] x=\left[\begin{array}{cccc}
s & -1 & 0 & \cdots \\
0 & s & - & 0 \\
\vdots & - & x_{1} & 0 \\
a_{1} & \cdots & s & -1 \\
a_{n n} & s+a_{n}
\end{array}\right] x=\left[\begin{array}{c}
s x_{1}-x_{2} \\
s x_{2}-x_{3} \\
\vdots \\
s x_{n-1}-x \\
\sum_{i=1}^{n} a_{i} x_{i}+s x_{n} \\
\sum_{i=1}^{n} c_{1} x_{i}
\end{array}\right]
$$

If $\exists x \in \mathbb{R}^{n}, x \neq 0:\left[\begin{array}{c}S I-A \\ C\end{array}\right] x=0$, then rank $\left[\begin{array}{c}S I-A \\ C\end{array}\right]<n$ and (C, A) cannot be observable suppose $\left[\begin{array}{c}S I-A \\ C\end{array}\right] x=0$, then by recursion on the first ny row is we get that $x_{i}=s^{i-1} x_{1}$, Using this we get the equations

$$
\left\{\begin{aligned}
\sum_{i=1}^{n} a_{i} x_{i}+s x_{n}=0 \Rightarrow & \left(a_{1}+a_{2} s+\ldots+a_{n} s^{n-1}+s^{n}\right) x_{1}=0 \\
\sum_{i=1}^{n} c_{i} x_{i}=0 & \left(c_{1}+c_{2} s+\ldots c_{n} s^{n-1}\right) x_{1}=0
\end{aligned}\right.
$$

We identify (1) as the characteristic polynomial. ing. the roots are the eigenvalues of A.
Hence $\left[\begin{array}{c}S I-A \\ C\end{array}\right] x=0$ if and only, if some root of $\left(C_{1}+C_{2} S+\ldots+C_{n} S^{n}\right)$ is an eigenvalues of A, eg. the kernel of $\left[\begin{array}{c}S 5-A \\ C\end{array}\right]$ is nonempty if and only if no root of the polynomial $c_{1}+c_{2} s+\cdots+c_{n} s^{n}$ is an eigenvalue of A. Thus by the property in $T a)(C, A)$ is observable it and only if 4 no roots of $c_{1}+a_{2} s+\ldots+c_{n} s^{n}$ is an eqenvalue of A
lc)
From the solution of exersice 16, in equation (1) and (2), we see that a feedback ($C, A+b k$) will change these equations into

$$
\left\{\begin{array} { l }
{ \sum _ { i = 1 } ^ { n } (a _ { i } + k _ { 1 }) x _ { i } + s x _ { n } = 0 } \\
{ \sum _ { i = 1 } ^ { n } c _ { i } x _ { i } = 0 }
\end{array} \Rightarrow \left\{\begin{array}{l}
\left(a_{1}+k_{1}+\left(a_{2}+k_{2}\right) s+\ldots+\left(a_{n}+k_{n}\right) s^{n-1}+s^{n}\right) x_{1}=0 \\
\left(c_{1}+c_{2} s+\ldots+c_{n} s^{n-1}\right) x_{1}=0
\end{array}\right.\right.
$$

thus if we choose $c=[a, 0, i, 0], a \neq 0$ we can place the poles arbitrary and still maintain observability, according to the criterion in Ma.

2a) Show that the time-invariant system $\dot{x}=A x$ $x \in \mathbb{R}^{n}, A^{\top}=-A$ is not asymptotically stable

Solution:

The definition of asymptotical stability is given by definition 4.11

The system $\dot{x} \rightarrow A x$ is asymptotically stable it $x(t) \rightarrow 0$ when $t \rightarrow \infty, \forall x_{0}$

Since the given system is time-invariant, we have that

$$
x(t)=\Phi\left(t, t_{0}\right) x_{0}=e^{A\left(t-t_{0}\right)} x_{0}
$$

If $X(t)$ is asymptotically stable, then the norm $\|x(t)\|^{2} \rightarrow 0$ when $t \rightarrow \infty, \forall x_{\infty}$

$$
\|x(t)\|^{2}=(x(t))^{\top} x(t)=\left(e^{A\left(t-t_{0}\right)} x_{0}\right)^{\top}\left(e^{A\left(t-t_{0}\right)} x_{0}\right)=e^{a^{\top}\left(t-t_{0}\right)} e^{A\left(t-t_{0}\right)} x_{0}^{2}
$$

since $A^{\top}=-A$ it is obvious that $A^{\top} A=A A^{\top} \Leftrightarrow(-A) A=A(-A)$ thus A^{T} and a commute, and we get that

$$
\|x(t)\|^{2}=e^{0} x_{0}^{2} \neq 0 \text { as } t \rightarrow \infty, \forall x_{0}
$$

Hence the system is not asymptotically stable

Db)
Show that the system is (critically) stable

Solution:
The definition of being stable is given by definition 4.1.1 The system $\dot{x}=a_{x}$ is stable if the solution is boundeat on the intervall $[0, \infty$) for all initial values x_{0}

From 2 a we have that

$$
\|x(1)\|^{2}=x_{0} \quad \forall t \in[0, \infty)
$$

thus the system is bounded $\forall x_{0}$ which, by definition proves stability.
$3 a$.
Considering the system in $1 b$, with $n=2$ and pole placement in $s_{1}=-p, s_{2}=-2 p$, by feed back control $u=k x+v$. We get the system.

$$
\dot{x}=\tilde{A} x+B y
$$

$$
y=c x \quad, \text { where } \tilde{A}=\left[\begin{array}{cc}
0 & 1 \\
-3 p & -2 p^{2}
\end{array}\right], \quad B=\left[\begin{array}{l}
0 \\
1
\end{array}\right], c=\left[c_{1}, c_{2}\right]
$$

If we use taylor expansion on x we get

$$
x\left(t_{0}+h\right)=x\left(t_{0}\right)+\dot{x}\left(t_{0}\right) h_{h}+O\left(h^{2}\right)
$$

by inserting if from our system we get

$$
x\left(t_{0}+\hat{h}\right)=x\left(t_{0}\right)+\hat{B} x\left(t_{0}\right) h+B v h+O\left(h^{2}\right)
$$

Let $T_{p}=t_{0}$ th, and separate the matrix representation into two equations

$$
\left\{\begin{array}{l}
x_{1}\left(T_{p}\right)=x_{1}\left(t_{0}\right)+x_{2}\left(t_{0}\right) h+O\left(h^{2}\right) \\
x_{2}\left(T_{p}\right)=x_{2}\left(t_{0}\right)-3 p x_{1}\left(t_{0}\right) h-2 p^{2} x_{2}\left(t_{0}\right) h+v\left(t_{0}\right) h+O\left(h^{2}\right)=-3 p x_{1}\left(t_{0}\right) h+x_{2}\left(t_{0}\right)\left[1-2 p^{2} h\right]+v h+G\left(h^{2}\right)
\end{array}\right.
$$

Let $h=\frac{1}{p}$

$$
\left\{\begin{array}{l}
x_{1}\left(T_{p}\right)=x_{1}\left(t_{0}\right)+x_{2}\left(t_{0}\right) \cdot \frac{1}{p}+O\left(\frac{1}{p^{2}}\right) \\
x_{2}\left(T_{p}\right)=-3 x_{1}\left(t_{0}\right)+x_{2}\left(t_{0}\right)[1-2 p]+v\left(t_{0}\right) \frac{1}{p}+\mathcal{O}\left(\frac{1}{p^{2}}\right)
\end{array}\right.
$$

let $p \rightarrow \infty$
then $x_{1}\left(T_{p}\right) \rightarrow x_{1}\left(t_{0}\right)$ and $x_{2}\left(F_{p}\right) \rightarrow-\infty$
Thus $\left\|x\left(T_{p}\right)\right\| \rightarrow \infty$ as $p \rightarrow \infty$
This shows that there are solutions $x(t)$ such that $\left|x\left(t_{p}\right)\right| \rightarrow \infty$ as $p \rightarrow \infty$ for some finite t_{p}

Intrerssant loris!
$2 p$

Bb) given the system $\left\{\begin{array}{l}\dot{x}=A x+B u \\ y=c_{x}\end{array}\right.$ and the feedlenck $u=k_{y}+v$

We want to show that the reachable subspace R and the unobservable: subspace kor Ω are invariant under the feedback control.

By lemma 6.1.2 we have that the reachable subspace R is invariant under any feedback $a=\hat{k} x+v$ Thus set $\hat{K}=k C$ and the assumption is proven by lemma 6,1,2

To show that Ger Ω is invariant we note that by the fundamental theorem of linear algebra $\mathbb{R}^{n}=\operatorname{Im}\left(\Omega^{\top}\right) \oplus \operatorname{Ker} \Omega$, where n is the dimension of A and $\left(\operatorname{Im} \Omega^{\top}\right)^{\perp}=\operatorname{ker} \Omega$

Thus if $I_{m} \Omega^{T}$ is invariant under the control, so is jer Ω. We know that $\operatorname{Im} \Omega^{\top}=\left\langle A^{\top} / \operatorname{Im} C^{\top}\right\rangle \triangleq \operatorname{Im}\left[C^{\top}, A^{\top} C^{\top}, \ldots, A^{T^{(n-1)}} C^{\top}\right]=$

$$
=\operatorname{In} C^{T}+A^{T} \operatorname{Im} C^{T}+\ldots+A^{T(n-1)} \operatorname{Im} C^{T}
$$

Let Ω_{k} be the observable subspace of the feedback controlled system Then $\operatorname{Im} \Omega_{k}^{\top}=\left\langle(\bar{A}+B k C)^{\top} \mid I_{m} C^{\top}\right\rangle=\left\langle A^{\top}+C^{\top} k^{\top} B^{\top} \mid \operatorname{Im} C^{\top}\right\rangle=$

$$
=\left\langle A^{\top} \mid \operatorname{Im} c^{\top}\right\rangle+\left\langle c^{\top} R^{\top} B^{T} \mid \operatorname{Im} c^{\top}\right\rangle
$$

$\Rightarrow A^{\top} \operatorname{Im} C^{\top} \subseteq I_{m} \Omega^{\top} \quad$ (by lemma $3,2,7$, setting $I_{m} \Omega^{\top}=R^{\prime}$) and $I_{m} C^{\top} \subseteq \operatorname{Im} \Omega^{\top}$
\Rightarrow Introduce the notation $\tilde{A}=A^{\top}, \tilde{B}=C^{\top}, \tilde{K}=K^{\top} B^{T}, \tilde{R}=I m \Omega \Omega^{\top}$
Then again by Lemma $6,1,2, \operatorname{Using}(\tilde{A}, \tilde{B}, \tilde{K})$ we have that $\hat{J}=\widehat{R}_{k} \Leftrightarrow I_{m} \Omega^{\top}=I_{m} \Omega_{k}^{\top}$
\Rightarrow kern $\Omega=$ ger Ω_{k} thus the unobservable subset is invariant under the given feedback control $2 p$

La) consider $R(s)=\left[\begin{array}{ll}\frac{s+2}{s+1} & \frac{1}{s+1} \\ \frac{2}{s+1} & \frac{s+1}{s+2}\end{array}\right]$
Determine the standard reachable realization of $R(s)$

Solution:
We start by breaking out the constant matrix D in $R(s)$

$$
R(s)=\left[\begin{array}{ccc}
\frac{s+1}{s+1}+\frac{1}{s+1} & \frac{1}{s+1} & \\
\frac{2}{s+1} & \frac{s+1+1}{s+2} & -\frac{1}{s+2}
\end{array}\right]=\underbrace{\left[\begin{array}{cc}
\frac{1}{s+1} & \frac{1}{s+1} \\
\frac{2}{s+1} & \frac{-1}{s+2}
\end{array}\right]}_{R^{\prime}(s)=C(s I-A)^{-1} B}+\underbrace{\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]}_{D}
$$

For simplicity we will consider $R^{\prime}(s)$ and then add our D when giving the final solution.
Next we thus want to find the least common denominater of R'(s)

$$
x(s)=(s+1)(s+2)=s^{2}+3 s+2 \Rightarrow r=2, a_{1}=3, a_{2}=2
$$

Next we want to find matrices N_{0}, N_{1}.

$$
X(s) R^{\prime}(s)=\left[\begin{array}{cc}
s+2 & s+2 \\
2 s+4 & -s-1
\end{array}\right]=\underbrace{\left[\begin{array}{cc}
2 & 2 \\
4 & -1
\end{array}\right]}_{N_{0}}+\underbrace{\left[\begin{array}{cc}
1 & 1 \\
2 & -1
\end{array}\right]}_{N_{0}} s
$$

Thus we define out realization by

$$
A=\left[\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-2 & 0 & -3 & 0 \\
0 & -2 & 0 & -3
\end{array}\right], B=\left[\begin{array}{ll}
0 & 0 \\
0 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right], D=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad C=\left[\begin{array}{cccc}
2 & 2 & 1 & 1 \\
4 & -1 & 2 & -1
\end{array}\right]
$$

4b)
By theorem 5,2,6 we have that:
The realization (A, B, C, D) of a matrix proper rational functions is reachable and observable if and only it it is minimal

The characteristic polynomial to $R(s)$ is equal to that of $R^{\prime}(s)$. from Han) we have that

$$
R^{\prime}(s)=\left[\begin{array}{cc}
\frac{1}{s+1} & \frac{1}{s+1} \\
\frac{2}{s+1} & \frac{-1}{s+2}
\end{array}\right]
$$

The McMillan degree will give the dimension of a minimal realization. The McMillan degree is equal to the degree of the characteristic polynomial of $R(S) \Leftrightarrow$ degce of characteristic polynomial of $R^{\prime}(s)$.
The only miner of order two has the least common denominator $(s+2)(s+1)^{2}$, which has a higher degree than all order one minors. Thus the McMillan degree $\delta(R(s))=3$, Gut the dimension of our realization in $4 a$ is 4. Hence the realization is not minimal, and cannot be both reachable and observable. We know by construction that our realization is reachable, hence it is not observable
answer: No, the realization (A, B, C, D) from la is not observable.
ic)

As in Ya) we have that

$$
R(s)=R^{\prime}(s)+D, \quad R^{\prime}(s)=\left[\begin{array}{cc}
\frac{1}{s+1} & \frac{1}{s+1} \\
\frac{2}{s+1} & \frac{-1}{s+2}
\end{array}\right], \quad D:\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

To constrict an observable realization we start by a Laurent expansion of $\mathbb{R}^{\prime}(s)$.

$$
\begin{aligned}
& R^{\prime}(s)=s^{-1}\left[\begin{array}{ll}
\frac{1}{1+s^{-1}} & \frac{1}{1+s^{-1}} \\
\frac{2}{1+s^{-1}} & \frac{-1}{1+2 s^{-1}}
\end{array}\right]=s^{-1}\left[\begin{array}{cc}
\sum_{n=0}^{\infty}(-1)^{n} s^{-n} & \sum_{n=0}^{\infty}(-1)^{n} s^{-n} \\
2 \sum_{n=0}^{\infty}(-1)^{n} s^{-n} & \sum_{n=0}^{\infty}(-2)^{n} s^{-n}
\end{array}\right] \\
& \Rightarrow R^{\prime}(s)=\underbrace{\left[\begin{array}{cc}
1 & 1 \\
2 & -1
\end{array}\right]}_{R_{1}} \underbrace{\left[\begin{array}{cc}
-1 & -1 \\
-1 & 2
\end{array}\right]}_{R_{2}^{-1}} \underbrace{-2} \cdots
\end{aligned}
$$

We already know from $4 a)$ that $x(s)=s^{2}+3 s+2 \Rightarrow a_{1}=3, a_{2}=2$ Thus our realization (A, B, C, D) is defined by

$$
A=\left[\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-2 & 0 & -3 & 0 \\
0 & -2 & 0 & -3
\end{array}\right], B=\left[\begin{array}{cc}
1 & 1 \\
2 & -1 \\
-1 & -1 \\
-1 & 2
\end{array}\right], C=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right], D=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

4d)

Refering to problem 4b) the McMillan degree $\delta(R(s))=3$

Sa)
Given the realization (A, B, C) we want to place the poles o the system at $\{-1,-1,-2,-2\}$, by feed back control $u=k_{x_{x}}$. We know that this is possible. space the given realization is controlabe.

Thus we get a new system $(\hat{A}, \hat{B}, \hat{C})$ where

$$
\hat{A}=A+B K, \quad \hat{B}=B, \quad \hat{C}=C
$$

To place the poles at $\{-1,-1,-2,-2\}$ is equivalent to

$$
\begin{aligned}
& \varphi(s)=(s+1)^{2}(s+2)^{2}=s^{4}+6 s^{3}+13 s^{2}+12 s+4 \\
& \Rightarrow \gamma_{1}=6, \gamma_{2}=13, \gamma_{3}=12, \gamma_{4}=4
\end{aligned}
$$

We want \hat{A} on the form

$$
\hat{A}=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-\gamma_{4} & -\gamma_{3} & -\gamma_{2} & -\gamma_{1}
\end{array}\right]
$$

Let $k=\left[\begin{array}{llll}k_{1} & k_{2} & k_{3} & k_{4} \\ c_{5} & k_{6} & k_{7} & k_{8}\end{array}\right]$, then we want to make $A+B K=\hat{A}$

$$
\begin{aligned}
& A+B K=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 1
\end{array}\right]+\left[\begin{array}{cc}
0 & 0 \\
1 & 1 \\
0 & 0 \\
-1 & 1
\end{array}\right]\left[\begin{array}{lll}
k_{1} & k_{2} & k_{3} \\
k_{5} & k_{6} & k_{7} \\
k_{8}
\end{array}\right]=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
\left(k_{1}+k_{5}\right) & \left(k_{6}+k_{2}\right) & \left(1+k_{7}+k_{2}\right) & \left(1+k_{8}+k_{4}\right) \\
0 & 0 & 0 & 1 \\
\left(k_{5}-k_{8}\right) & \left(k_{6}-k_{2}\right) & \left(1+k_{7}-k_{3}\right) & \left(1+k_{8}-k_{4}\right)
\end{array}\right] \\
& \Rightarrow k=\left[\begin{array}{llll}
2 & 6 & 7 & 3
\end{array}\right]
\end{aligned}
$$

$$
\Rightarrow k=\left[\begin{array}{rrrr}
2 & 6 & 7 & 3 \\
-2 & -6 & -7 & -4
\end{array}\right]
$$

- "the feedback given by $u=\left[\begin{array}{cccc}2 & 6 & 7 & 3 \\ 2 & -6 & -7 & -4\end{array}\right] \times$ places the poles of the realization (A, B, C) in $\{-1,-1,-2,-2\}$

5b) We know that (A, B, C) is controllable. If the system is also observable it is minimal. $\Omega=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 2\end{array}\right]$, which obviously does not have full rank
Hence the realization (A, B, C) is not minimal To make the Kalman decomposition we want to find a base for Ger Ω. By inspection span $\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right\}=\operatorname{ker} \Omega\right.$ Kalman decomposition:

$$
\begin{aligned}
& V_{\bar{o}_{r}}=R \cap \text { er } \Omega=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right. \\
& \mathbb{R}^{4}=V_{\overline{o r} r} \oplus V_{o r} \Rightarrow V_{o r}=\operatorname{span}\left\{\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right\}\right. \\
& \Rightarrow V_{\bar{o} \bar{r}}=V_{o r}=\{0\}
\end{aligned}
$$

Thus the matrices of the kalman de composition are

$$
A=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 1
\end{array}\right] \quad B=\left[\begin{array}{cc}
0 & 0 \\
\hdashline 1 & 1 \\
0 & 0 \\
-1 & 1
\end{array}\right] \quad C=\left[\begin{array}{llll}
0 & 1 & 1 & 0
\end{array}\right]
$$

And a minimal realization is given by

$$
\begin{aligned}
& \dot{x}=\left[\begin{array}{lll}
0 & 1 & 1 \\
0 & 0 & 1 \\
0 & 1 & 1
\end{array}\right] x+\left[\begin{array}{cc}
1 & 1 \\
0 & 0 \\
-1 & 1
\end{array}\right] u \\
& y=\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right] x
\end{aligned}
$$

