

Homework 1 Mathematical Systems Theory, SF2832 Fall 2013

You may use min(5,(your score)/4) as bonus credit on the exam.

1. Find the state transition matrix for the following	systems
---	---------

(b)
$$\dot{x}(t) = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -k & -1 - 2k & -2 - k \end{bmatrix} x(t),$$

(c) Let

$$\dot{x} = A(t)x$$

and

$$\dot{z} = K(t)z$$
.

2. Consider the rotational motion of a point x in R^3 with respect to the origin:

$$\dot{x} = \omega(t) \times x$$
,

where $\omega(t) = (\omega_1(t), \omega_2(t), \omega_3(t))^T$ is the angular velocity, and "×" is the vector cross product.

- (a) Express the kinematics of x(t) in the form of $\dot{x} = A(t)x$(2p)
- 3. Consider

$$\dot{x} = Ax + Bu, \ x \in \mathbb{R}^n$$

where A and B are constant matrices. Show that if $x(0) \in \mathcal{R}$, then $x(t) \in \mathcal{R}$, $\forall t \geq 0$, and for all u(t) such that the solution is unique. \mathcal{R} is defined as $\mathcal{R} = Im(B, AB, \dots, A^{n-1}B)$. (3p)

4. Assume

$$\dot{x} = Ax$$

y = cx

is observable, where $x \in \mathbb{R}^n$ and $y \in \mathbb{R}$.

- (a) Let $\bar{x}_i = cA^{i-1}x$, $i = 1, \dots, n$. What is \bar{A} and \bar{c} under the new coordinates? Use the characteristic polynomial of A to express elements of \bar{A} if necessary. (3p)
- (b) Show the n-tuple integrator system

$$\dot{x}_1 = x_2 \\
\vdots \\
\dot{x}_{n-1} = x_n \\
\dot{x}_n = u \\
y = x_1$$