

Solution to Homework 1 Mathematical Systems Theory, SF2832 Fall 2013

For your reference only

1. Find the state transition matrix for the following systems

$$(a) \ \dot{x}(t) = \begin{bmatrix} 0 & 1 \\ 0 & t^2 \end{bmatrix} x(t) \tag{2}$$

Answer: omitted.

$$(b) \ \dot{x}(t) = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -k & -1 - 2k & -2 - k \end{bmatrix} x(t),$$

Answer: omitted.

(c) Let

$$\dot{x} = A(t)x$$

and

$$\dot{z} = K(t)z$$
.

Answer: $K(t) = -A^{T}(t)$ since $\dot{\Phi}_{x}^{T}(s,t) = (\dot{\Phi}_{x}(s,t))^{T} = (-\Phi_{x}(s,t)A(t))^{T}$.

2. Consider the rotational motion of a point x in R^3 with respect to the origin:

$$\dot{x} = \omega(t) \times x,$$

where $\omega(t) = (\omega_1(t), \omega_2(t), \omega_3(t))^T$ is the angular velocity, and "×" is the vector cross product.

(a) Express the kinematics of x(t) in the form of $\dot{x} = A(t)x$(2p)

Answer:
$$A = \begin{bmatrix} 0 & -\omega_3 & \omega_2 \\ \omega_3 & 0 & -\omega_1 \\ -\omega_2 & \omega_1 & 0 \end{bmatrix}$$
.

Answer: $||x(t)||^2 = x(t_0)^T \Phi^T(t, t_0) \Phi(t, t_0) x(t_0)$. Since $A(t)^T = -A(t)$, we have $\Phi^T(s, t) = \Phi(t, s)$ (by 1.c above, $K(t) = -A(t)^T = A(t)$). Thus, $x(t_0)^T \Phi^T(t, t_0) \Phi(t, t_0) x(t_0) = x(t_0)^T \Phi(t_0, t) \Phi(t, t_0) x(t_0) = x(t_0)^T x(t_0)$.

3. Consider

$$\dot{x} = Ax + Bu, \ x \in \mathbb{R}^n$$

where A and B are constant matrices. Show that if $x(0) \in \mathcal{R}$, then $x(t) \in \mathcal{R}$, $\forall t \geq 0$, and for all u(t) such that the solution is unique. \mathcal{R} is defined as $\mathcal{R} = Im(B, AB, \dots, A^{n-1}B)$. (3p)

Answer: $x(t) = e^{At}x(0) + \int_0^t e^{A(t-s)}Bu(s)ds = e^{At}x(0) + (B\int_0^t u(s) + \dots + A^kB\int_0^t \frac{(t-s)^k}{k!}u(s)ds + \dots + e^{At}x(0) \in \mathcal{R}$ if $x(0) \in \mathcal{R}$, and the second term is also in \mathcal{R} by definition of \mathcal{R} and Cayley-Hamilton Theorem.

4. Assume

$$\dot{x} = Ax$$

$$y = cx$$

is observable, where $x \in \mathbb{R}^n$ and $y \in \mathbb{R}$.

(a) Let $\bar{x}_i = cA^{i-1}x$, $i = 1, \dots, n$. What is \bar{A} and \bar{c} under the new coordinates? Use the characteristic polynomial of A to express elements of \bar{A} if necessary. (3p)

Answer: Since the system is observable, the new coordinates are well defined. We can easily see that $\dot{\bar{x}}_i = cA^{i-1}\dot{x} = cA^ix = \bar{x}_{i+1}, \ i = 1, \dots, n-1$, and $\dot{\bar{x}}_n = cA^nx = c(-a_nA^{n-1} - \dots - a_1I)x = -a_n\bar{x}_n - \dots - a_1\bar{x}_1$. We use Cayley-Hamilton to derive the last equality.

(b) Show the n-tuple integrator system

$$\dot{x}_1 = x_2$$

:

$$\dot{x}_{n-1} = x_n$$

$$\dot{x}_n = u$$

$$y = x_1$$

Answer: omitted.