

KTH Matematik

Homework 3 Mathematical Systems Theory, SF2832 Fall 2013

You may use $min(5,(your \ score)/4)$ as bonus credit on the exam.

1. Determine a state feedback K such that the eigenvalues of the closed-loop system $\dot{x} = (A + BK)x$ are located in $\{-1, -1, -2, -2\}$, for the case when

$A = \begin{bmatrix} 0 & 1 \\ 1 & 1 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$	$egin{array}{ccc} 0 & 0 \ 0 & 1 \ 2 & 0 \ 0 & 3 \end{array} ight angle,$	$B = \begin{bmatrix} 0 & 0 \\ 1 & 1 \\ 0 & 1 \\ 0 & 1 \end{bmatrix}$	
L° °	·····	L° -J	

2. Consider a state space realization (A, b, c) as follows

 $\dot{x} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} x + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u$ $y = \begin{bmatrix} c_1 & c_2 & 1 \end{bmatrix} x,$

where c_1 , c_2 are constants.

. .

- (a) For what c_1 , c_2 is the system observable?.....(1p)

- **3.** Consider a state space system (A,b) as follows

 $\dot{x}_1 = x_1 + ax_2$ $\dot{x}_2 = ax_1 + u,$

where a is a constant, and the cost function

$$J=\int_0^{t_1}(x_2^2+\epsilon^2u^2)dt.$$

Assume $x^*(t)$ is the optimal trajectory for a given initial point $(x_1(0) \ x_2(0))^T$ with the optimal control $u = -\epsilon^{-2}b^T P(t)x(t)$.

4. Consider a one-dimensional system

$$\begin{aligned} x(t+1) &= ax(t) + v(t) \\ y(t) &= x(t) + w(t), \end{aligned}$$

where $a \neq 0, v, w$ are uncorrelated white noises, with covariances σ, r respectively.

- (a) Design a Kalman filter $\hat{x}(t)$ for x(t).....(2p)
- (b) Express the covariance matrix $p(t) = E\{(x(t) \hat{x}(t))^2\}$ in terms of $a, \sigma, r.(2p)$
- (c) What is a ak(t) as $t \to \infty$ (where k(t) is the Kalman gain)?(2p)