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1. Determine a state feedback K such that the eigenvalues of the closed-loop system
ẋ = (A+BK)x are located in {−1,−1,−2,−2}, for the case when

A =


0 1 0 0
1 1 0 1
0 0 2 0
0 0 0 3

 , B =


0 0
1 1
0 1
0 1


. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3p)

Answer: omitted.

2. Consider a state space realization (A, b, c) as follows

ẋ =

0 1 0
0 0 1
0 0 0

x+

00
1

u

y =
[
c1 c2 1

]
x,

where c1, c2 are constants.

(a) For what c1, c2 is the system observable? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1p)

Answer: c1 ̸= 0.

(b) Design a feedback controller u = kx such that dimension of the unobservable
subspace for (c, A+ bk) is maximized while A+ bk has at least one eigenvalue
at −1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3p)

Answer: To maximize the unobservable subspace is to have as many pole/zero
cancellations as possible. Thus the characteristic polynomial for A+ bk should
be (s2 + c2s+ c1)(s+ 1) and we obtain the k accordingly.

(c) Assume now that c1 = 2, c2 = 3 and the full state is not available. Can we
always design an observer-based control that stabilizes the overall system, with
the closed-loop poles located at {−1,−2,−3} and the observer dynamics having
poles at {−1,−2,−3}? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2p)

Answer: Yes, since the system is both controllable and observable.

3. Consider a state space system (A,b) as follows

1
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ẋ1 = x1 + ax2

ẋ2 = ax1 + u,

where a is a constant, and the cost function

J =

∫ t1

0
(x22 + ϵ2u2)dt.

Assume x∗(t) is the optimal trajectory for a given initial point (x1(0) x2(0))
T with

the optimal control u = −ϵ−2bTP (t)x(t).

(a) For what a is P (t) positive definite ∀t < t1?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2p)

Answer: a ̸= 0.

(b) Now let t1 = ∞. For the case where P∞ is positive definite, compute the
eigenvalues of A− ϵ−2bbTP∞ as ϵ → 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3p)

Answer: −1,−∞.

4. Consider a one-dimensional system

x(t+ 1) = ax(t) + v(t)

y(t) = x(t) + w(t),

where a ̸= 0, v, w are uncorrelated white noises, with covariances σ, r respectively.

Comment: This problem is given to show that in general it is difficult to solve
explicitly a Kalman filter (this is just a scalar system). On the other hand, we will
be generous in grading.

(a) Design a Kalman filter x̂(t) for x(t). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2p)

Answer: omitted.

(b) Express the covariance matrix p(t) = E{(x(t)− x̂(t))2} in terms of a, σ, r.(2p)

Answer: p(t+1) = a2rp(t)
r+p(t) +σ, but this is difficult to solve. Let p0 =

a2rp0
r+p0

+σ,

which gives a positive solution p0 =
1
2(a

2r+σ−r+
√

(a2r + σ − r)2 + 4σr). Let
p(t) = δp(t) + p0, then we have (after straight forward manipulation) 1

δp(t+1) =
p0+r

a2r+σ−p0
1

δp(t) +
1

a2r+σ−p0
, which is a linear system thus can be solved.

(c) What is a− ak(t) as t → ∞ (where k(t) is the Kalman gain)? . . . . . . . . . . . (2p)

Answer: Since | p0+r
a2r+σ−p0

| > 1, 1
δp(t) diverges thus p(t) converges to p0. Since

k(t) = p
p+r , |a(1 −

p0
p0+r )| = | ar

p0+r | < | 2ar
a2r+σ+r

| ≤
√

r
r+σ < 1, which shows the

Kalman filter converges.


