

KTH Matematik

Solution to Homework 1 Mathematical Systems Theory, SF2832 Fall 2014

For reference only.

1. Find the state transition matrix $\Phi(t,s)$ for the following systems

(b)
$$\dot{x}(t) = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -1 & -1 \end{bmatrix} x(t).$$

Answer: $det(sI-A) = (s+1)(s^2+1)$. Then we compute $e^{At} = \mathcal{L}^{-1}[(sI-A)^{-1}]$. The detail is omitted.

2. (a) Let

$$\dot{x} = A(t)x$$

(b) Let

$$\dot{x} = A(t)x$$
.

Show that if $\int_s^t A(\tau)d\tau$ and A(t) commute for all t,s, then the state transition matrix $\Phi(t,s) = \exp(\int_s^t A(\tau)d\tau)$(3p)

Answer: We use Taylor expansion to show that $\frac{d}{dt}exp(\int_s^t A(\tau)d\tau) = A(t)exp(\int_s^t A(\tau)d\tau)$. For this purpose we only need to show $\frac{d}{dt}(\int_s^t A(\tau))^k = (\frac{d}{dt}(\int_s^t A(\tau))(\int_s^t A(\tau))^{k-1} + \cdots + (\int_s^t A(\tau))^{k-1} \frac{d}{dt}(\int_s^t A(\tau)) = kA(t)(\int_s^t A(\tau))^{k-1}$.

3. Consider

$$\dot{x} = Ax, x \in R^n$$

$$y = Cx, y \in R^p$$

$$x(0) = x_0$$

where A and C are constant matrices.

(a) Show that if $x(0) \in \ker \Omega$, then $x(t) \in \ker \Omega$, $\forall t \geq 0$, where $\Omega = (C^T, A^TC^T, \dots, (A^{n-1})^TC^T)^T$. (3p)

Answer: If $\Omega x(0) = 0$, then by Cayley-Hamilton theorem, $\Omega Ax(0) = 0$, thus $Ax(0) \in \ker \Omega$. We then show $A^k x(0) \in \ker \Omega$ by repeating this step, thus $e^{At} x(0) \in \ker \Omega$.

- (b) Show that the above system is observable if and only if the only solution that satisfies $Cx(t) = 0, \forall t \geq 0$ is $x(t) = 0, \dots (2p)$ **Answer:** $Cx(t) = 0, \forall t \geq 0$ implies that for any k, $Cx^{\{k\}}(t) = CA^kx(t) = 0, \forall t \geq 0$. Once again by Cayley-Hamilton we have $x(t) \in ker \Omega$ and the conclusion follows.
- 4. The following is linearized model of a so-called inverted double pendulum

$$\dot{x} = Ax + Bu
 y = Cx,$$

where

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & -a_1 & 0 & -a_1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & a_2 & 0 & -a_3 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 3a_3 & 0 & -a_4 & 0 \end{bmatrix}, B = \begin{bmatrix} 0 \\ b_1 \\ 0 \\ -15b_2 \\ 0 \\ -b_2 \end{bmatrix}, C = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

and all the parameters are positive.

Answer: The purpose here is to let you practice Maple. As we will see, for almost all parameters the system is controllable.

(b) Is the system observable? $\dots (2p)$

Answer: One can easily see observability by using 3(b).