
Solution to Homework 2
Mathematical Systems Theory, SF2832

Fall 2014
For reference only

1. Consider the pair (C,A), where

A =

[
a1 a2
1 0

]
C =

[
0 1

]
.

For what a1 and a2 the Lyapunov equation ATP + PA+ CTC = 0 has

(a) a positive definite solution? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1p)

Solution: Since (C,A) is observable, P > 0 iff A is a stable matrix, i.e. a1 <
0, a2 < 0.

(b) a negative definite solution (-P is positive definite)? . . . . . . . . . . . . . . . . . . . . . (1p)

Solution: a1 > 0, a2 > 0

(c) a solution that is neither positive nor negative definite? Where are the eigen-
values of A located in this case? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2p)

Solution: When a1a2 ≤ 0. The two eigenvalues do not lie on the same open
half of the complex plane.

2. You will in this problem derive and investigate a number of realizations for the
transfer function

R(s) =


γ

s+ 1

1

s+ 1
1

(s+ 1)2
1

(s+ 1)2

 ,

where γ > 0 is a constant.

(a) Determine the standard reachable realization of R(s). . . . . . . . . . . . . . . . . . . . (1p)

Solution: χ(s) = s2 + 2s+ 1, N(s) =

[
γ 1
1 1

]
+

[
γ 1
0 0

]
s, the rest is omitted.

(b) What is the McMillan degree of R(s)? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2p)

Solution: δ(R) = 3 if γ 6= 1, otherwise 2.

(c) Find a minimal realization of R(s) for γ = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3p)

Solution: In this case δ(R) = 2. Since the first column of R equals the second,

we just need to find a minimum realization for R̄(s) =

[
1

s+ 1

1

(s+ 1)2

]T
and then replace u by u1 + u2. The standard controllable realization of R̄ has
dimension 2.

1



Sid 2 av 3 HW2 2014 SF2832

3. (a) Given the matrix

A =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
...

0 0 0 · · · 1
−a1 −a2 −a3 · · · −an

 ,

Suppose all the eigenvalues of A are real. Show that A is diagonalizable by a
linear transformation T if and only if all the eigenvalues of A are distinct.(3p)

Solution: “if”: straight forward. “only if”: Suppose A is diagonalizable but not
all eigenvalues are distinct, then there is no b ∈ Rn that makes the diagonalized
A and b controllable, but b = [0 · · · 0 1]T makes (A, b) controllable, contradiction.

(b) Consider a controllable and observable system

ẋ = Ax+ bu

y = cx,

where, x ∈ Rn, u ∈ R, y ∈ R. We say the system has relative degree r if
cb = 0, · · · , cAr−2b = 0, and cAr−1b 6= 0. Show we can find u = kx =

∑n
i=1 kixi

such that (c, A+ bk) is not observable if and only if r < n. . . . . . . . . . . . . . . (3p)

Solution: Since the system is minimal, there is no zero-pole cancellation in
R(s) = c(sI − A)−1b. To introduce unobservability is to introduce zero-pole
cancellation by feedback control, since this implies the feedback system is not
minimal any more, meanwhile the controllability does not change. There are
zeros to be canceled iff r < n.

(c) Consider

ẋ1 = x2

ẋ2 = u,

one can use high gain control u = −2k2x1 − 3kx2, k > 0 to place the poles
to −k, −2k. To see a drawback of having too high gain, show that for the
closed-loop system if |x1(0)| 6= 0

lim
k→∞

max
t≥0

|x(t)| = ∞.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3p)

Solution: An easy way to see this is to choose x(0) = (1, 0)T and compute
eAtx(0).

4. Consider the inverted pendulum

The following equation describes the motion of the pendulum around the equilibrium
θ = 0:
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If |θ(t)| < π
2 :

Lθ̈ − g sin(θ) + ẍ cos(θ) = 0, (1)

If |θ(t)| = π
2 :

θ̇ = 0, θ̈ = 0. (2)

(2) indicates that once the pendulum falls on the cart, it remains in that position.
Assume L = 1, and let x1 = θ, x2 = θ̇, u = ẍ, we can linearize (1) as

ẋ1 = x2

ẋ2 = gx1 − u (3)

(a) Design u = gx1 + k1x1 + k2x2, where k1 + k2 ≤ 30, such that

– (3) is asymptotically stable, and

– use the nonlinear model (1) AND (2) and Matlab to find out what is the
maximum |θ(0)| while θ̇(0) = 0 you can swing up. Give this maximum
value with an accuracy of ±0.1 degree and attach the simulation plot as
evidence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3p)

Note: If the best value is obtained by not more than two students, then the
winner(s) will receive two extra bonus credits for the exam, provided that
the winning control is allowed to be published on the course web.

(b) Now let y = x1. Design an observer based on (3) and repeat the simulation.
Attach a plot to show what is the maximum angle now. . . . . . . . . . . . . . . . . . (3p)

Solution: We will announce the winning solution later.

L

u

x

θ

Figur 1: Inverted pendulum on a cart.


