

KTH Matematik

Solution to Homework 2 Mathematical Systems Theory, SF2832 Fall 2014 For reference only

1. Consider the pair (C, A), where

$$A = \begin{bmatrix} a_1 & a_2 \\ 1 & 0 \end{bmatrix}$$
$$C = \begin{bmatrix} 0 & 1 \end{bmatrix}.$$

For what a_1 and a_2 the Lyapunov equation $A^T P + PA + C^T C = 0$ has

- 2. You will in this problem derive and investigate a number of realizations for the transfer function

$$R(s) = \begin{bmatrix} \frac{\gamma}{s+1} & \frac{1}{s+1} \\ \frac{1}{(s+1)^2} & \frac{1}{(s+1)^2} \end{bmatrix},$$

where $\gamma > 0$ is a constant.

3. (a) Given the matrix

		$\begin{array}{c} 1 \\ 0 \end{array}$	0 1	· · · ·	$\begin{bmatrix} 0\\ 0 \end{bmatrix}$	
A =	:	:	:	÷	:	,
	0	0	0		1	
	$-a_1$	$-a_2$	$-a_3$	•••	$-a_n$	

Suppose all the eigenvalues of A are real. Show that A is diagonalizable by a linear transformation T if and only if all the eigenvalues of A are distinct. (3p) **Solution**: "if": straight forward. "only if": Suppose A is diagonalizable but not all eigenvalues are distinct, then there is no $b \in \mathbb{R}^n$ that makes the diagonalized A and b controllable, but $b = [0 \cdots 0 \ 1]^T$ makes (A, b) controllable, contradiction.

(b) Consider a controllable and observable system

$$\dot{x} = Ax + bu$$
$$y = cx,$$

where, $x \in \mathbb{R}^n$, $u \in \mathbb{R}$, $y \in \mathbb{R}$. We say the system has relative degree r if $cb = 0, \dots, cA^{r-2}b = 0$, and $cA^{r-1}b \neq 0$. Show we can find $u = kx = \sum_{i=1}^{n} k_i x_i$ such that (c, A + bk) is not observable if and only if r < n.(3p) **Solution**: Since the system is minimal, there is no zero-pole cancellation in $\mathbb{R}(s) = c(sI - A)^{-1}b$. To introduce unobservability is to introduce zero-pole cancellation by feedback control, since this implies the feedback system is not minimal any more, meanwhile the controllability does not change. There are zeros to be canceled iff r < n.

(c) Consider

$$\dot{x}_1 = x_2$$
$$\dot{x}_2 = u,$$

one can use high gain control $u = -2k^2x_1 - 3kx_2$, k > 0 to place the poles to -k, -2k. To see a drawback of having too high gain, show that for the closed-loop system if $|x_1(0)| \neq 0$

$$\lim_{k\to\infty}\max_{t\ge 0}|x(t)|=\infty.$$

Solution: An easy way to see this is to choose $x(0) = (1, 0)^T$ and compute $e^{At}x(0)$.

4. Consider the inverted pendulum

The following equation describes the motion of the pendulum around the equilibrium $\theta = 0$:

If
$$|\theta(t)| < \frac{\pi}{2}$$
:
 $L\ddot{\theta} - g\sin(\theta) + \ddot{x}\cos(\theta) = 0,$ (1)
If $|\theta(t)| = \frac{\pi}{2}$:
 $\dot{\theta} = 0, \ \ddot{\theta} = 0.$ (2)

(2) indicates that once the pendulum falls on the cart, it remains in that position. Assume L = 1, and let $x_1 = \theta$, $x_2 = \dot{\theta}$, $u = \ddot{x}$, we can linearize (1) as

$$\begin{aligned} x_1 &= x_2 \\ \dot{x}_2 &= g x_1 - u \end{aligned} \tag{3}$$

- (a) Design $u = gx_1 + k_1x_1 + k_2x_2$, where $k_1 + k_2 \leq 30$, such that
 - (3) is asymptotically stable, and

Note: If the best value is obtained by not more than two students, then the winner(s) will receive **two extra bonus credits** for the exam, provided that the winning control is allowed to be published on the course web.

Solution: We will announce the winning solution later.

Figur 1: Inverted pendulum on a cart.