

Homework 1 Mathematical Systems Theory, SF2832 Fall 2015

You may use min(5,(your score)/4) as bonus credit on the exam.

(Your homework should be handed in to Yuecheng Yang before the deadline)

1. Find the state transition matrix $\Phi(t,s)$ for the following systems

2. (a) Suppose an $n \times n$ matrix A(t) satisfies $\dot{A} = KA - AK$, $A(0) = A_0$, where K is a constant $n \times n$ matrix. Show

$$A(t) = e^{Kt} A_0 e^{-Kt},$$

(b) For the same A in (a), consider

$$\dot{x} = A(t)x$$
.

3. Consider

$$\dot{x} = Ax + bu,$$

where

$$A = \begin{bmatrix} 0 & -a_1 & a_2 \\ a_1 & 0 & -a_3 \\ -a_2 & a_3 & 0 \end{bmatrix}, b = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}.$$

- (a) Show that $\forall x(0), \|e^{At}x(0)\| = \|x(0)\|.$ (2p)
- (b) Show that if $||a|| \neq 0$, then there exists b such that (A, b) is controllable, where $a = (a_1 \ a_2 \ a_3)^T \dots (3p)$

4. The following is linearized model of an inverted pendulum

$$\dot{x} = Ax + Bu$$

where g is the acceleration of gravity, and

$$A = \begin{bmatrix} 0 & 1 \\ g & 0 \end{bmatrix}, \ B = \begin{bmatrix} 0 \\ -1 \end{bmatrix}.$$

(a) Check controllability for this system. Can we find control $u = k_1x_1 + k_2x_2$ such that the closed-loop system

$$\dot{x} = \begin{bmatrix} 0 & 1 \\ g - k_1 & -k_2 \end{bmatrix} x$$

(b) Can we find a scalar output y = cx such that the system is observable? ..(2p)