

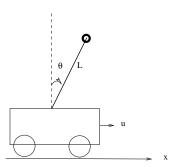
Homework 1 Mathematical Systems Theory, SF2832 Fall 2016

You may use min(5,(your score)/4) as bonus credit on the exam.

1.	(a) Find the input-output description for $\ddot{y} = -y + u$, where $y \in R$ is the output and $u \in R$ is the input
	(b) Find the state transition matrix for the following system $\dot{x}(t) = \begin{bmatrix} 0 & t & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix} x(t)$
2.	Consider the rotational motion of a point x in R^3 with respect to the origin: $\dot{x} = \omega \times x,$
	where $\omega = (\omega_1, \omega_2, \omega_3)^T \neq 0$, a constant vector, is the angular velocity, and "×" is the vector cross product.
	(a) Express the kinematics of $x(t)$ in the form of $\dot{x} = Ax$ (1p) (b) Compute e^{At} (4p)
3.	Consider
	$ \dot{x} = Ax + Bu y = Cx $
	where $x \in \mathbb{R}^n$, $u \in \mathbb{R}^m$, $y \in \mathbb{R}^p$, A , B and C are constant matrices. Let Ω be the observability matrix as is defined in the compendium. State and prove the necessary and sufficient condition such that for any $x(0) \in \ker \Omega$, $x(t) \in \ker \Omega$, $\forall t \geq 0$, no

matter what u(t) is used.

4. Consider the inverted pendulum as we did in the lecture



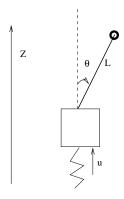
Figur 1: Inverted pendulum on a cart.

The following equation describes the motion of the pendulum around the equilibrium $\theta = 0$:

$$L\ddot{\theta} - g\sin(\theta) + \ddot{x}\cos(\theta) = 0$$

- (a) We consider \ddot{x} as the input u and θ as the output y. Let $x_1 = \theta$ and $x_2 = \dot{\theta}$. Derive the state space model for the linearized system (i.e. let $\sin(\theta) \approx \theta$ and $\cos(\theta) \approx 1$).....(1p)
- (b) Show the model you derive in (a) is both controllable and observable. ... (2p)

5. Now consider an inverted pendulum with oscillatory base



Figur 2: Pendulum with oscillatory base.

The following equation describes the motion of the pendulum around the equilibrium $\theta = 0$:

$$L\ddot{\theta} - g\sin(\theta) - \ddot{z}\sin(\theta) = 0$$

- (a) We consider \ddot{z} as the input u and θ as the output y. Let $x_1 = \theta$ and $x_2 = \dot{\theta}$. Derive the state space model for the *linearized* system (i.e. let $\sin(\theta) \approx \theta$).(1p)
- (b) Is the model you derive in (a) controllable?(1p)