

Solution to Homework 1 Mathematical Systems Theory, SF2832 Fall 2016 You may use min(5,(your score)/4) as bonus credit on the exam.

1. (a) Find the input-output description for $\ddot{y} = -y + u$, where $y \in R$ is the output and $u \in R$ is the input.(2p) **Answer:** A state space model for the system is: $\dot{x}_1 = x_2$, $\dot{x}_2 = -x_1+u$, $y = x_1$. Then

$$G(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} exp \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} t \begin{bmatrix} 0 & 1 \end{bmatrix}^T = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{pmatrix} \cos t & \sin t \\ -\sin t & \cos t \end{bmatrix} \begin{bmatrix} 0 & 1 \end{bmatrix}^T = \sin t.$$

(b) Find the state transition matrix for the following system

	0	t	0	
$\dot{x}(t) =$	0	0	1	x(t)
	0	-1	0	

Answer: Using the result from (a), we obtain first the state transition matrix for the subsystem consisting of x_2 and x_3 .

Then we have $\dot{x}_1 = tx_2(t) = t \cos tx_2(0) + t \sin tx_3(0)$, thus

 $x_1(t) = x_1(0) + (\cos t + t\sin t)x_2(0) + (\sin t - t\cos t)x_3(0).$

We can then easily write down the state transition matrix for the whole system. The rest is omitted.

2. Consider the rotational motion of a point x in \mathbb{R}^3 with respect to the origin:

$$\dot{x} = \omega \times x,$$

where $\omega = (\omega_1, \omega_2, \omega_3)^T \neq 0$, a constant vector, is the angular velocity, and "×" is the vector cross product.

(a) Express the kinematics of x(t) in the form of $\dot{x} = Ax$(1p)

Answer: $A = \begin{bmatrix} 0 & -\omega_3 & \omega_2 \\ \omega_3 & 0 & -\omega_1 \\ -\omega_2 & \omega_1 & 0 \end{bmatrix}$

$$e^{At} = e^{\frac{A}{|\omega|}|\omega|t} = I + \frac{A}{|\omega|}\sin(|\omega|t) + \frac{A^2}{|\omega|^2}(1 - \cos(|\omega|t)).$$

3. Consider

 $\begin{array}{rcl} \dot{x} &=& Ax + Bu \\ y &=& Cx \end{array}$

where $x \in \mathbb{R}^n$, $u \in \mathbb{R}^m$, $y \in \mathbb{R}^p$, A, B and C are constant matrices. Let Ω be the observability matrix as is defined in the compendium. State and prove the necessary and sufficient condition such that for any $x(0) \in \ker \Omega$, $x(t) \in \ker \Omega$, $\forall t \ge 0$, no matter what u(t) is used.

Answer: We show the condition $\mathcal{R} \subseteq \ker \Omega$ is necessary and sufficient. Sufficiency is obvious. We use contradiction to show the necessity. Assume $x_1 \in \mathcal{R}$, but not in ker Ω . Since the origin is in both \mathcal{R} and ker Ω , there is a control that makes $x(T) = x_1$ starting from the origin, where T is any positive number. This draws a contradiction.

4. Consider the inverted pendulum as we did in the lecture

Figur 1: Inverted pendulum on a cart.

The following equation describes the motion of the pendulum around the equilibrium $\theta = 0$:

$$L\hat{\theta} - g\sin(\theta) + \ddot{x}\cos(\theta) = 0$$

- (a) We consider \ddot{x} as the input u and θ as the output y. Let $x_1 = \theta$ and $x_2 = \dot{\theta}$. Derive the state space model for the linearized system (i.e. let $\sin(\theta) \approx \theta$ and $\cos(\theta) \approx 1$).....(1p)
- (b) Show the model you derive in (a) is both controllable and observable. ... (2p) **Answer:** Omitted.

5. Now consider an inverted pendulum with oscillatory base The following equation describes the motion of the pendulum around the equilibrium $\theta = 0$:

$$L\ddot{\theta} - g\sin(\theta) - \ddot{z}\sin(\theta) = 0$$

- (a) We consider \ddot{z} as the input u and θ as the output y. Let $x_1 = \theta$ and $x_2 = \dot{\theta}$. Derive the state space model for the *linearized* system (i.e. let $\sin(\theta) \approx \theta$).(1p) **Answer:** $\dot{x}_1 = x_2, \ \dot{x}_2 = \frac{g}{L}x_1$.

Figur 2: Pendulum with oscillatory base.