

KTH Matematil

Homework 1 Mathematical Systems Theory, SF2832 Fall 2017

You may use min(5,(your score)/4) as bonus credit on the exam.

1. Solve the following linear state equations

$$(a) \ \dot{x}(t) = \begin{bmatrix} -1 & 1 & e^t \\ 0 & -1 & 0 \\ 0 & 0 & -2 \end{bmatrix} x(t), \ x(0) = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \dots (2p)$$

- (b) $\dot{x}(t) = \sin(t)x(t) \sin(t), \ x(0) = 1. \dots (1p)$
- (c) Let $A \in \mathbf{R}^{n \times n}$ be any constant matrix and let $\alpha(t)$ be a continuous scalar function. What is the state transition matrix for $\dot{x}(t) = \alpha(t)Ax(t)$?(1p)
- 2. Consider

$$\dot{x} = A(t)x + B(t)u$$

$$y = C(t)x,$$

where $x \in \mathbb{R}^n$, $u \in \mathbb{R}^m$, $y \in \mathbb{R}^p$, and the dual system

$$\begin{split} \dot{\bar{x}} &= -A^T(t)\bar{x} + C^T(t)v \\ \bar{y} &= B^T(t)\bar{x}. \end{split}$$

3. Consider the motion of a point x on a rigid body in \mathbb{R}^3 with respect to the origin:

$$\dot{x} = \omega \times x + bu(t).$$

where $\omega = (1, 1, 1)^T$ is the angular velocity and $b = (b_1, 1, 1)^T$ is the direction of the translational velocity, u(t) is free to design, and "×" is the vector cross product.

- (a) Show that by designing u(t), x can reach anywhere in R^3 for almost all values of b_1(3p)
- (b) Let $b_1 = 1$, u = 1, x(0) = 0, compute x(t).....(2p)
- 4. Consider the inverted pendulum as we did in the lecture (see Figure 1). The following equation describes the motion of the pendulum around the equilibrium $\theta = 0$:

$$L\ddot{\theta} - q\sin(\theta) + \ddot{x}\cos(\theta) = 0$$

- (b) Setting u(t) = 0 and using the linearized model, can we find an initial state $x_1(0) \neq 0$ and $x_2(0)$ such that $x_1(t) = 0$ for all $t \geq T$ where T > 0 is some finite time?.....(2p)
- 5. Now consider an inverted pendulum with oscillatory base (see Figure 2). The following equation describes the motion of the pendulum around the equilibrium $\theta = 0$:

$$L\ddot{\theta} - g\sin(\theta) - \ddot{z}\sin(\theta) = 0$$

- (a) We consider \ddot{z} as the input u and θ as the output y. Let $x_1 = \theta$ and $x_2 = \dot{\theta}$. Derive the state space model for the *linearized* system (i.e. let $\sin(\theta) \approx \theta$).(1p)
- (b) Is the model you derive in (a) controllable?(1p)
- (c) Let $z = 0.1 \sin(\omega t)$ (be careful with the variable!). Use Matlab simulation to find out what will happen to the motion (use the original nonlinear model!) of the pendulum near $\theta = 0$ when the oscillation is "slow" and when the oscillation is "fast". Take L = 1, $\theta(0) = 0.02$ and $\dot{\theta}(0) = 0.\dots(3p)$

Figur 1: Inverted pendulum on a cart.

Figur 2: Pendulum with oscillatory base.