Solution to Homework 1

 Mathematical Systems Theory, SF2832
Fall 2017

You may use $\min (5,($ your score)/4) as bonus credit on the exam.

1. Solve the following linear state equations
(a) $\dot{x}(t)=\left[\begin{array}{ccc}-1 & 1 & e^{t} \\ 0 & -1 & 0 \\ 0 & 0 & -2\end{array}\right] x(t), x(0)=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$

Answer: $x(t)=\left[e^{-t}+2 t e^{-t}, e^{-t}, e^{-2 t}\right]^{T}$.
(b) $\dot{x}(t)=\sin (t) x(t)-\sin (t), x(0)=1$.

Answer: $x(t)=1$.
(c) Let $A \in \mathbf{R}^{n \times n}$ be any constant matrix and let $\alpha(t)$ be a continuous scalar function. What is the state transition matrix for $\dot{x}(t)=\alpha(t) A x(t)$? \qquad
Answer: $\Phi(t, s)=e^{A \int_{s}^{t} \alpha(r) d r}$.
2. Consider

$$
\begin{aligned}
\dot{x} & =A(t) x+B(t) u \\
y & =C(t) x,
\end{aligned}
$$

where $x \in R^{n}, u \in R^{m}, y \in R^{p}$, and the dual system

$$
\begin{aligned}
\dot{\bar{x}} & =-A^{T}(t) \bar{x}+C^{T}(t) v \\
\bar{y} & =B^{T}(t) \bar{x}
\end{aligned}
$$

We use $G(t, s)$ and $\bar{G}(t, s)$ to denote their impulse responses respectively. Show that $\bar{G}(t, s)=G^{T}(s, t)$.
Answer: Since $\left.\frac{\partial}{\partial s} \Phi^{(} t, s\right)=-\Phi(t, s) A(s), \frac{\partial}{\partial s} \Phi^{T}(t, s)=-A^{T}(s) \Phi^{T}(t, s)$. Thus, $\bar{\Phi}(s, t)=$ $\Phi^{T}(t, s)$. The rest follows.
3. Consider the motion of a point x on a rigid body in R^{3} with respect to the origin:

$$
\dot{x}=\omega \times x+b u(t),
$$

where $\omega=(1,1,1)^{T}$ is the angular velocity and $b=\left(b_{1}, 1,1\right)^{T}$ is the direction of the translational velocity, $u(t)$ is free to design, and " \times " is the vector cross product.
(a) Show that by designing $u(t), x$ can reach anywhere in R^{3} for almost all values of b_{1}.
Answer: From $\omega \times x=A x$, it is easy to see that $A b=\omega \times b$, and $A^{2} b=$ $\omega \times(\omega \times b)$. Thus $b, A b, A^{2} b$ are linearly independent as long as b is neither orthogonal nor parallel to ω.
(b) Let $b_{1}=1, u=1, x(0)=0$, compute $x(t)$.

Answer: $b_{1}=1$ means that b is parallel to ω, thus $e^{A t} b=b$ (use Taylor expansion on $\left.e^{A t}\right)$. Then $x(t)=b t$.
4. Consider the inverted pendulum as we did in the lecture (see Figure 1). The following

Figur 1: Inverted pendulum on a cart.
equation describes the motion of the pendulum around the equilibrium $\theta=0$:

$$
L \ddot{\theta}-g \sin (\theta)+\ddot{x} \cos (\theta)=0
$$

Answer: Omitted.

(a) We consider \ddot{x} as the input u and θ as the output y. Let $x_{1}=\theta$ and $x_{2}=\dot{\theta}$. Derive the state space model for the linearized system (i.e. let $\sin (\theta) \approx \theta$ and $\cos (\theta) \approx 1$), and show that the model you derive is both controllable and observable.
(b) Setting $u(t)=0$ and using the linearized model, can we find an initial state $x_{1}(0) \neq 0$ and $x_{2}(0)$ such that $x_{1}(t)=0$ for all $t \geq T$ where $T>0$ is some finite time?
5. Now consider an inverted pendulum with oscillatory base (see Figure 2). The following equation describes the motion of the pendulum around the equilibrium $\theta=0$:

$$
L \ddot{\theta}-g \sin (\theta)-\ddot{z} \sin (\theta)=0
$$

Answer: Omitted.
(a) We consider \ddot{z} as the input u and θ as the output y. Let $x_{1}=\theta$ and $x_{2}=\dot{\theta}$. Derive the state space model for the linearized system (i.e. let $\sin (\theta) \approx \theta) .(1 \mathrm{p})$
(b) Is the model you derive in (a) controllable?
(c) Let $z=0.1 \sin (\omega t)$ (be careful with the variable!). Use Matlab simulation to find out what will happen to the motion (use the original nonlinear model!) of the pendulum near $\theta=0$ when the oscillation is "slow" and when the oscillation is "fast". Take $L=1, \theta(0)=0.02$ and $\dot{\theta}(0)=0$.

Figur 2: Pendulum with oscillatory base.

