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Solution to Homework 3
Mathematical Systems Theory, SF2832
Fall 2018
You may use min(5,(your score)/5) as bonus credit on the exam.
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Answer: omitted.

(a) Is the system observable? ...... ... ... i (1p)
(b) Design a feedback controller u = kz such that the closed-loop poles are placed

I =L, =2 (2p)
(¢) Is the resulting closed-loop system observable? Why? .................... (2p)

(d) Assume now that only the output is available. Can we design an observer ba-
sed controller that stabilizes the system, with the closed-loop poles located at

{—1, -2} and the observer dynamics having poles at {—1,—1}? ......... (2p)
Consider
.%"1 = X9
To = YU
z(0) = xo,

where v > 0 can be viewed as a control gain.

(a) Design a stabilizing feedback control u = kyx + koxe that is also the optimal
control to

min /0 T (22(0) + u2(8)dt.

Answer: 0.

Consider
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T = axy + u,
and the cost function .
1
J:/ (23 + u?)dt,
0
where a is a constant.

(a) Find the optimal control for the case a =0. ............................. (2p)

Answer: When a = 0, the dynamics of x5 is decoupled from that of x;. Thus,
for the solution P to the ARE, we have p; = ps = 0, while p3 can be solved by
considering only &2 = u.

(b) Let t; = oo, discuss for what a we have a positive definite solution to the
corresponding algebraic Riccati equation. ........... ... ... ... (2p)

Answer: a # 0.

4. Let P(t,tf) denote the solution at time ¢ with terminal time ¢; to the following
matrix Riccati equation:
P=—-ATP_-PA+PBBTP-Q
P(ty,ty) =0,
where A, B, Q are constant matrices and > 0. Show that P(t1,t5) — P(t2,tf) >0
forany t9 <o Sty oo (3p)
Answer: When tg < T} < T, we have :L'OTP(to, T1)xo = min, ft? (27 Qx +uTu)dt <

min,, ft?(xTQm +ulu)dt = xl P(tg, Ty)xo, namely P(to, T1) < P(to,Ts). However,
P(ty,T) = P(0,T — ty), the rest follows if we identify ¢; as T" and 1,2 as o in the
last equality.

5. Consider the discrete time system

x(t+1) = Azx(t) + Bo(t),
(1) = Cx(t) + Du(t),

where

z(0) = zo, E [v(t)vT (s)] = 6¢.41,
E [2(0)zT(0)] = Py, E [w(t)w? (s)] = 6.1,

and where v, w, z(0) are uncorrelated with zero mean value.
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Answer: The covariance matrix V(t) = Ex(t)z(t)T has the initial condition
V(0) = Py, and it evolves over time as

V(t+1)=Exz(t+ Dt +1)T = E{(Az(t) + Bu(t))(z(t)T AT + v(t)T BT)}
= AV(t)AT + BB'.

(b) Let z(t) = Ex(t) be the Kalman estimate defined by
T(t+1) = Az(t) + AK(t)(y(t) — Cz(t))

and let K(t) = P(t)CT[CP(t)CT + DD”]~! be the Kalman gain. Determine
a recursive equation for the covariance matrix P(t) = E{(z(t) — 2(t))(z(t) —

#(t))T} of the estimation error, where we choose P(0) = Py. ............. (1p)
Answer: P(t+1) = AP(t)AT+BBT - AP(t)CT[CP(t)CT+DDT|~1CP(t)AT.
(¢) Show that R(t) := V(t) — P(t) is positive semi-definite for all ¢ .......... (3p)

Answer: We prove it inductively. We have R(0) = V(0) — P(0) = Py — Py =0,
which is positive semidefinite. Now assume R(t) > 0 and try to show that

R(t+1)>0.
Rit+1)=V(t+1)—Pt+1)=A(V(t)— P(t)) AT
R(t)>0
+ AP@)CTCcP(t)CT + DDT]1CP(t) AT

>0

so R(t 4+ 1) is positive semidefinite. R(t) is now positive semi-definite for all ¢
by induction.



