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In 1960, Rudolf E. Kalman published his famous paper describing the solution to the

discrete-data linear filtering problem.

• Recursive

• Optimal

• First applied to Apollo 11 (navigation computer)

3

Optimization and Systems Theory

Royal Institute of Technology

A simple example

Two persons make an observation of something (say the height of a building) each.

• Person1: y1, σ2
y1

.

• Person2: y2, σ2
y2

.

We first use

x̂1 = y1

σ2
1 = σ2

y1

(No priori information about x is available!)
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We then update:

x̂2 = x̂1 + K(y2 − x̂1)

K =
σ2

1

σ2
1 + σ2

y2

⇐ Kalman gain

σ2
2 =

σ2
1σ2

y2

σ2
1 + σ2

y2

⇒ x̂2 =
σ2

y2
y1 + σ2

y1
y2

σ2
y1

+ σ2
y2

⇐ Gauss − Markov
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Setup

Consider

x(t + 1) = Ax(t) + Bv(t)

y = Cx + Dw(t)

x(0) = x0 (unknown),

where v(t) and w(t) are white noise with covariance

Ev(t)v(t)T = Q > 0, Ew(t)w(t)T = R > 0.

Question 1: Given the measurements y(0), · · · , y(t), what is the “best”

estimation for x(t), the best prediction for x(t + 1)?
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Here “best” is in the sense that the estimation has the least mean square error:

E‖x(t) − x̂∗(t)‖2 ≤ E‖x(t) − x̂(t)‖2.

Question 2: If x̂∗
t−1(t) is the best estimation (prediction) based on

y(0), · · · , y(t − 1), can we express the optimal estimation after y(t) is available

as

x̂∗(t) = x̂∗
t−1(t) + K(t)(y(t) − Cx̂∗

t−1(t))? (Recursively)

i.e.,

E‖x(t) − x̂∗
t−1(t) − K∗(t)(y(t) − Cx̂∗

t−1(t))‖2 = E‖x(t) − x̂∗(t)‖2?
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Least square estimation

Given a linear relation

y(t) =
N∑

i=1

xifi(t),

suppose fi(t) are known and linearly independent, but the coefficients xi are to be

determined. We do M (M ≥ N) experiments in order to decide the coefficients:

y(tj) =
N∑

i=1

xifi(tj), j = 1, · · · , M.

⇒
Fx = b.

Now find an x̂ such that

‖F x̂ − b‖2 → min.
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Taking the derivative, one get

x̂ = (FT F )−1FT b.

For any vector y = Fx ∈ Im(F ), we can easily show

< Fx̂ − b, y > = yT (F (FT F )−1FT − I)b

= xT (FT F (FT F )−1FT − FT )b = 0.

F x̂ is called the orthogonal projection of b onto the space Im(F ), and can be

noted as

F x̂ = EIm(F )b.

⇒
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Orthogonal projection theorem

Suppose H is a Hilbert space, b ∈ H , and Y a subspace of H . Then ŷ = EY b,

or

min
y∈Y

‖b − y‖2 = ‖b − ŷ‖2

if and only if

< b − ŷ, y >= 0, ∀y ∈ Y.

Lemma If Y1 is orthogonal to Y2, then

EY1⊕Y2b = EY1b + EY2b.
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Orthogonal projection in function space

Orthogonal projection theorem holds even for infinite-dimensional Hilbert Spaces.

For example, the space of square integrable functions L2[a, b]. For the space of

random variables with finite second moments, with

‖x‖2 = E{x2}, < x, y >= E{xy},
it is also an infinite-dimensional Hilbert Space.

Now suppose for a variable (function) x in H , several independent observations

(functions) y1, · · · , ym in H are given. Let Y = span{y1, · · · , ym} ∈ H .

Obviously the best approximation of x by the observations is EY x.
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Let us first consider x as a scalar.

EY x = min
k

‖x − ky‖2 = min
k

‖x − yT kT ‖2,

where y = [y1 · · · ym]T , k = [k1 · · · km].

Following the previous discussion, we have

k∗y = [yT (y · yT )−1y · x]T = x · yT (y · yT )−1y,

where “·” denotes component-wise inner product.

If x = [x1, · · · , xn]T has n components, we just do the projection

component-wise. ⇒
EY x = K∗y = x · yT (y · yT )−1y.

Note: For L2[a, b], x · y =
∫ b

a
x(t)y(t)dt. For the space of random variables,

x · y = E{xy}.
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Kalman gain

Now let’s go back to the Kalman filter problem.

Suppose y1(0), · · · , ym(0), · · · , y1(t), · · · , ym(t) are the observations

available at t (remember each of these is a random variable). Let Ht denote the

space spanned by these variables. Apparently

x̂t(t) = EHtx(t),

where the subscript indicates the latest time an observation is made. Similarly

x̂t−1(t) = EHt−1x(t).

Now we show we can calculate x̂t(t) recursively!
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Lemma Let H be a finite dimensional Hilbert space, then EHPx = PEHx.

Proof: Let {y1, · · · , yN} be a basis of H . Then,

EHPx = (Px) · yT (y · yT )−1y.

Since Px = [
∑n

j=1 p1jxj , · · · ,
∑n

j=1 pmjxj ]T ,

(Px) · yT = [(
n∑

j=1

p1jxj · yT )T , · · · , (
n∑

j=1

pmjxj · yT )T ]T = P (x · yT )

Thus, EHPx = PEHx.
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Let ỹ(t) = y(t) − EHt−1y(t), then by the orthogonal projection theorem, ỹ(t) is

orthogonal to Ht−1. Thus,

Ht = Ht−1 ⊕ [ỹ(t)],

where [ỹ(t)] denotes the space spanned by components of ỹ(t).

⇒
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Kalman filter

x̂t(t) = EHtx(t) = EHt−1x(t) + E[ỹ(t)]x(t)

= x̂t−1(t) + K(t)ỹ(t)

= x̂t−1(t) + K(t)(y(t) − Cx̂t−1(t)),

since ỹ(t) = y(t) − EHt−1(Cx(t) + Dw(t)) = y(t) − CEHt−1x(t).

Now we have finally shown (rigorously) that the optimal estimation can be

obtained by linear recursion!
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From this point on, there are several methods for deriving the optimal K(t), besides

the orthogonal projection method originally used by Kalman.

Let e(t) = x(t) − x̂t−1(t) − K(t)(y(t) − Cx̂t−1), one method is to solve

min
K(t)

E‖e(t)‖2 = min
K(t)

tr E{e(t)eT (t)} = min
K(t)

tr Pt(t).

Denote E{(x(t) − x̂t−1(t))(x(t) − x̂t−1(t))T } by Pt−1(t). With considerable

hindsight, let

K(t) = Pt−1(t)CT (CPt−1(t)CT + DRDT )−1 + K̃,

we have

trPt(t) = tr[Pt−1(t) − Pt−1(t)CT (CPt−1(t)CT + DRDT )−1CPt−1(t)

+ K̃(CPt−1(t)CT + DRDT )K̃T ].

⇒ K̃ = 0 gives the optimal K !
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Once x̂t(t) is obtained, the best prediction for x(t + 1) based on observations up

to t can be derived as

x̂t(t + 1) = EHtx(t + 1) = EHt(Ax(t) + Bw(t)) = Ax̂t(t).

Accordingly,

et(t + 1) = x(t + 1) − x̂t(t + 1) = Aet(t) + Bw(t)

and

Pt(t + 1) = E(et(t + 1)eT
t (t + 1)) = APt(t)AT + BQBT .
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Kalman filter in summary

Kalman filter consists of two phases.

Measurement update (correction):

xt(t) = x̂t−1(t) + K(t)(y(t) − Cx̂t−1(t))

Pt(t) = Pt−1(t) − K(t)CPt−1(t)

K(t) = Pt−1(t)CT (CPt−1(t)CT + DRDT )−1.

After the update, we always have

Pt(t) ≤ Pt−1(t).

We note that K(t) is defined slightly different from the compendium.

Time update (prediction):

x̂t(t + 1) = Ax̂t(t)

Pt(t + 1) = APt(t)AT + BQBT .
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Kalman filter and classical parameter estimation

Consider the problem of estimating parameter x from the observations

y = Ax + v,

where E{vvT } = V . We wish to find the linear, unbiased, minimum variance

estimator x̂∗. Namely, in the class of x̂ = Ky, and E{x̂} = E{x}, we have

E{(x − x̂∗)T (x − x̂∗)} → min .

The Gauss-Markov theorem (see also the notes by Trygger) tells us

x̂∗ = I−1AT V −1y,

where I = AT V −1A is called the information matrix.
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Now the interesting question is how this compares with Kalman filter:

x̂k+1 = x̂k + PkAT (APkAT + V )−1(y − Ax̂k).

We can view xk and Pk as the priori information we have on x. Rewrite

x̂k+1 = PkAT (APkAT + V )−1y + [I − PkAT (APkAT + V )−1A]x̂k

= [P−1
k + I]−1AT V −1y + [P−1

k + I]−1P−1
K x̂k.

Here we have used the equalities

PAT [APAT + V ]−1 = [I + PV −1A]−1PAT V −1 and

I − PAT (APAT + V )−1A = [I + PAT V −1A]−1

Conclusion: When P−1
0 = 0, Kalman filter is the same as Gauss-Markov

estimation!
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Continuous time Kalman filter

Now consider

ẋ = Ax(t) + Bv(t)

y = Cx + Dw(t)

x(0) = x0 (unknown),

Here we assume all matrices are time invariant. x0, w, v are pairwise

uncorrelated with zero mean and further more w, v are white noises with

Ev(t)v(s)T = Qδ(t − s), Ew(t)w(s)T = Rδ(t − s).
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Heuristically (we do not intend to be very rigorous!), we can understand the white

noises as the derivatives of some Brownian motion (although this derivative does

not exist in a conventional sense). For example,

∫ t

s

w(r)dr = β(t) − β(s),

where

E(β(t) − β(s)) = 0, E(β(t) − β(s))(β(t) − β(s))T = R(t − s), t > s.

Thus, ∫ t

s

Rdr = E

∫ t

s

w(r)dr

∫ t

s

wT (τ)dτ.

Then, ∫ t

s

(
∫ t

s

E{w(r)wT (τ)dτ − R})dr = 0.
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Since this is true for any interval, we have

∫ t

s

E{w(r)wT (τ)}dτ = R, ∀r ∈ [t, s].

Thus,

E{w(r)wT (τ)} = Rδ(r − τ).

We can derive E{w(t)} = 0 similarly.

Now we use the discrete Kalman filter to derive the continuous one (by letting

Δt → 0.)
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Let x(t + 1) = x(t + Δt), when Δt is very small, we have (“≈” means equal up

to O(Δt2))

Ad = eAΔt ≈ I + AΔt, Cd = C.

Since vd(t) =
∫ t+Δt

t
eA(t+Δt−s)v(s)ds ≈ β(t + Δt) − β(t),

Qd ≈ QΔt, Rd ≈ R/Δt.

Then, Kd(t) ≈ P (t)CT (DRDT )−1Δt. We have

x̂(t + 1) ≈ (I + AΔt)(x̂(t) + Kd(t)(y(t) − Cx̂(t)),

or,

x̂(t + 1) − x̂(t) ≈ Ax̂(t)Δt + P (t)CT (DRDT )−1(y(t) − Cx̂(t))Δt.

Thus, by dividing both sides with Δt and taking the limit, we have

˙̂x(t) = Ax̂(t) + K(t)(y(t) − Cx̂(t)),

where K(t) = P (t)CT (DRDT )−1.
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Since

P (t + Δt) ≈ (I + AΔt)(I − KdC)P (t)(I + AΔt)T + BQΔtBT

≈ P (t) + (AP (t) + P (t)AT )Δt − P (t)CT (DRDT )−1CP (t)Δt + BQBT Δt

Similarly, we obtain

Ṗ (t) = AP (t) + P (t)AT − P (t)CT (DRDT )−1CP (t) + BQBT ,

and we assume P (0) = P0 is known.
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Steady-state Kalman filter

When (A, B) is controllable and (C, A) is observable, we know that P (t) has a

limit as t → ∞ (remember DRDT > 0, Q > 0):

AP∞ + P∞AT − P∞CT (DRDT )−1CP∞ + BQBT = 0.

What this implies is that the rate the information comes in, PCT (DRDT )−1CP

(less noise means better quality), is just balanced by the rate the information

diffuses from the system, BQBT (smaller diffusion means less loss), and by any

damping or amplification the system may have.

In practice, we may use P∞ to compute the Kalman gain K .
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