
LINEAR ALGEBRA BACKGROUND FOR MATHEMATICAL

SYSTEMS THEORY.

1. Introduction

In this note we summarize some linear algebra results that will be used when
investigating reachability and observability of linear systems. The basic problem
under consideration is the fundamental solvability conditions for linear equation
systems.

Warning: The presentation is compact and dense. The main point is Figure 1. If
you understand the idea behind this figure then you will also be able to understand
the idea behind the proof of reachability in Lindquist and Sand.

Consider the linear equation system

Ax = b(1.1)

We will address the following questions

(a) When is there a solution?
(b) Is the solution unique? Which solution do we pick otherwise?
(c) How do we construct the solution?

As an example consider the simple system
[

1 1
1 1

] [

x1

x2

]

=

[

1
β

]

(1.2)

It is clear that

(a) There exist solutions if and only if β = 1.
(b) If β = 1 then any solution must satisfy x1 +x2 = 1. This equation defines a

line, which means that there are infinitely many solutions to (1.2) if β = 1
and otherwise no solutions at all. Among all these solutions it is natural
to pick the minimal length solution, i.e. the solution to the optimization
problem

min x2

1 + x2

2 subj. to x1 + x2 = 1

(c) In this simple problem we reduce the optimization problem to

min x2

1 + (1 − x1)
2 = min 2x2

1 − 2x1 + 1

which has the solution x1 = 1/2, which gives (x1, x2) = (0.5, 0, 5).

We will formalize the above discussion by using the fundamental theorem of linear
algebra. For a comprehensive discussion of these topics we refer to

• K. Svanberg. Linjär algebra för optimerare.
• G. Strang. Linear algebra and it’s applications.

This note borrows material from an exercise note by G. Bortolin.
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2. Some key linear algebra definitions

We here summarize some basic concepts and definitions in linear algebra that
will be used.

• The set R
n is the set of all column vectors with n real valued components.

Any element in x ∈ R
n will be represented as a column vector

x =











x1

x2

...
xn











• R
n is an example of a (finite dimensional) vector space. The formal defini-

tion of a linear vector space is given next.

Definition 2.1 (Linear vector space). A (real) linear vector space is a set
V of elements that satisfies the following rules of operation. If x, y, z ∈ V,
a, b ∈ R, and 0 is the zero vector then
(i) (x + y) + z = x + (y + z)

(ii) 0 + x = x
(iii) x + (−x) = 0
(iv) x + y = y + x
(v) a(x + y) = ax + ay

(vi) (a + b)x = ax + by
(vii) (ab)x = a(bx)

(viii) 1 · x = x

In R
n, 0 is the vector with all components equal to zero.

You probably use this set of rules all the time without really reflecting
on its value. The importance of the definition is that it is not only R

n

that satisfies the above rules. There are other important sets of elements
that satisfy the same rules of operation and therefore defines a linear vector
spaces. One example is linear subspaces of R

n that will be discussed next.
• A subset V ⊂ R

n is a linear subspace if ∀v1, v2 ∈ V and ∀α1, α2 ⊂ R

α1v1 + α2v2 ∈ V. A linear subspace V ⊂ R
n is a vector space since it

satisfies the operations in Definition 2.1. Indeed, since the subspace is
closed under linear combinations, i.e. α1v1 + α2v2 ∈ V, for all α1, α2 ∈ R

and v1, v2 ∈ V, it follows that the rules are inherited from R
n.

• A subspace V ⊂ R
n is said to be spanned by the set of vectors v1, . . . , vr ∈ V

if every v ∈ V can be written as a linear combination of the vk, i.e., there
exists αk ∈ R such that v =

∑r
k=1

αkvk. The above can in more compact
notation be written

V = span{v1, . . . , vr} :=

{

r
∑

k=1

αkvk : αk ∈ R

}

The set of vectors v1, . . . , vr is called linearly independent if
∑r

k=1
αkvk =

0 implies αk = 0, k = 1, . . . , r. A linearly independent set of vectors that
spans V is called a basis for V.

If V = span{v1, . . . , vr} where the vectors vk, k = 1, . . . , r are linearly
independent (i.e. a basis for V) then we say that V has dimension r, which
is denoted dimV = r.
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Example 2.2. A concrete example of subspace is

V1 = span











1
0
0



 ,





1
1
0











⊂ R
3.

We have dim (V1) = 2.

• A vector space V is a direct sum of two subspaces V1 and V2, which is
written V = V1 ⊕ V2, if every vector v ∈ V uniquely can be decomposed as

v = v1 + v2, v1 ∈ V1, v2 ∈ V2

Example 2.3. An example of a direct sum decomposition is R
3 = V1 ⊕ V2,

where

V1 = span











1
0
0



 ,





1
1
0











, V2 = span











0
1
1











• The vector spaces used in the course are always equipped with a so-called
inner product (scalar product). For R

n the scalar product and its associated
norm are defined as

xT y =
n

∑

k=1

xkyk

‖x‖ =
√

xT x =

√

√

√

√

n
∑

k=1

x2

k

More generally we have the following definition

Definition 2.4 (Inner product). An inner product in a (real) vector space
V is a mapping 〈·, ·〉 : V × V → R such that
(i) 〈x, x〉 ≥ 0 and 〈x, x〉 = 0 if and only if x = 0

(ii) 〈x1, x2〉 = 〈x2, x1〉
(iii) 〈x1, ax2 + bx3〉 = a 〈x1, x2〉 + b 〈x1, x3〉
The norm associated with the inner product is defined as

‖x‖ =
√

〈x, x〉

and satisfies the properties
(a) ‖x‖ ≥ 0 and ‖x‖ = 0 if and only if x = 0
(b) ‖αx‖ = |α|‖x‖, ∀α ∈ R.
(c) ‖x1 + x2‖ ≤ ‖x1‖ + ‖x2‖ (triangle inequality)

Definition 2.5. An inner product space is a vector space V equipped with
an inner product.

When investigating reachability and observability of a linear system we
use the inner product space

Lm
2 [t0, t1] = {u : [t0, t1] → R

m s.t.

∫ t1

t0

‖u(t)‖2dt < ∞}
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The inner product and norm on this vector space are defined as

〈u, v〉
L2

=

∫ t1

t0

u(t)T v(t)dt

‖u‖L2
=

√

〈u, u〉
L2

=

(
∫ t1

t0

‖u(t)‖2dt

)1/2

Now that the inner product is defined we can introduce the important concept
of orthogonal complements and orthogonal direct sum decompositions.

• Let V be a vector space and W ⊂ V a subspace. The orthogonal complement

of W, denoted W⊥, is defined as

W⊥ = {v ∈ V : 〈v, w〉 = 0 ∀w ∈ W}
The orthogonal complement provides a particularly nice direct sum decom-
position V = W ⊕W⊥.

The orthogonal complement satisfies (V⊥)⊥ = V . Here V denotes the
closure of V. In all cases considered in this course we can use the simplified
rule (V⊥)⊥ = V.

• The notation V1 ⊥ V2 means that the vectors in V1 and V2 are mutually
orthogonal, i.e. 〈v1, v2〉 = 0 for any v1 ∈ V1 and v2 ∈ V2.

Example 2.6. If

V1 = span











1
0
0



 ,





1
1
0











, V2 = span











0
1
1











, V3 = span











0
0
1











then R
3 = V1 ⊕ V2 is a direct sum decomposition and R

3 = V1 ⊕ V3 is an
orthogonal direct sum decomposition, i.e. V3 = V⊥

1 .

3. The fundamental theorem of linear algebra

Let us consider an m × n matrix A. Given A, we can define four fundamental

subspaces1:

(1) The column space of A, defined as ImA = {Ax : x ∈ R
n} ⊂ R

m

(2) The null space of A, defined as KerA = {x ∈ R
n : Ax = 0} ⊂ R

n.
(3) The row space of A, which is the column space of AT , defined as Im AT =

{AT y : y ∈ R
m} ⊂ R

n.
(4) The left null space of A, which is the null space of AT , defined as KerAT =

{y ∈ R
m : yT A = 0} ⊂ R

m.

Definition 3.1. The rank of A is defined as rank(A) = dim ImA.

Example 3.2. If

A =

[

1 1 0
1 1 0

]

1A common alternative notation is R(A) := Im A and N (A) := Ker A. Note that in the

course, R denotes the reachability matrix. For a proof that the fundamental subspaces indeed are

subspaces we refer to Svanberg, Linjär algebra för optimerare.
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then

Im A = span

{[

1
1

]}

, KerA = span











1
−1
0



 ,





0
0
1











ImAT = span











1
1
0











, KerAT = span

{[

1
−1

]}

There is an important relation between these four subspaces described in the
following theorem:

The fundamental theorem of linear algebra: Suppose A is a m × n matrix

and has rank r. Then, one has the following decomposition:

(3.1) R
n = ImAT ⊕ KerA and R

m = ImA ⊕ KerAT

where the dimensions are:

dim Im A = r

dim Im AT = r

dim KerA = n − r

dim KerAT = m − r

and most importantly the decompositions in (3.1) are orthogonal, i.e.

(Im A)⊥ = KerAT

(Im AT )⊥ = KerA

Example 3.3. You may verify that the above relations between the subspaces hold
for Example 3.2. We also note that rank(A) = rank(AT ) = 1.

What does the fundamental theorem of algebra tell us about the m × n matrix
A? We have the following consequences:

(1) It tells us the dimensions of the four subspaces. In particular dim Im A = dim Im AT .
(2) The ambient space in which each subspace lives. That is:

• Im A and KerAT are in R
m.

• Im AT and KerA are in R
n

(3) The direct sum statement tells us that:
• Every vector b ∈ R

m can be written as the sum of a vector bcol ∈ Im A
and blnull ∈ KerAT :

b = bcol + blnull

• Every vector b in R
n can be written as the sum of a vector brow ∈

Im AT and bnull ∈ KerA:

b = brow + bnull

(4) The orthogonality of the four subspaces:
• Every vector in Im A is orthogonal to every vector in KerAT .
• Every vector in Im AT is orthogonal to every vector in KerA.
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3.1. Minimum norm solutions to linear equation systems. Let us again
consider the linear equation:

(3.2) Ax = b

We can now answer our previous questions.

(a) There is a solution to (3.2) if and only if b ∈ Im A
(b) Supposing that b ∈ ImA we have two possibilities. Either KerA = 0 and

the solution is unique or each solution of (3.2) can be uniquely decomposed
into

x = xrow + xnull with xrow ∈ Im (AT ), xnull ∈ Ker (A)

However we have that:

Ax = A(xrow + xnull) = Axrow = b

and hence xrow ∈ Im (AT ) is the only part of x significant in generating b.
Since xrow and xnull are orthogonal it follows that the xrow is the minimum
norm solution, i.e. it solves the minimization problem

min ‖x‖2 subj. to Ax = b

(c) We have three cases (assuming b ∈ Im (A))
(i) KerA = 0 and m = n. Then A is invertible and the solution is

obtained as x = A−1b.
(ii) If KerA = 0 but m > n then we can use that (Im A)⊥ = KerAT ,

which implies that

Ax = b ⇔ AT Ax = AT b

Indeed, the implication in the right direction is obvious and for the
left implication we use that AT (Ax − b) = 0, which implies Ax − b ∈
KerAT = (Im A)⊥, which in turn implies Ax = b. To compute the
solution we use that KerAT A = KerA = 0 (a formal proof can be
found in Theorem 3.4.3 in Lindquist and Sand), which implies that
AT A is invertible and the solution is obtained as x = (AT A)−1AT b.

(iii) If KerA 6= 0 it follows from (b) that the minimum norm solution of
the linear equation (3.2) is given by x = xrow = AT z where z is any
solution of AAT z = b. In particular, if AAT is invertible the minimum
norm solution is x = AT (AAT )−1b. To see that this indeed is the
minimum norm solution we let x = AT z + xnull, where xnull ∈ KerA.
We have

‖x‖2 = ‖AT z‖2 + 2(AT z)T xnull + ‖xnull‖2

= ‖AT z‖2 + 2zT Axnull + ‖xnull‖2

= ‖AT z‖2 + ‖xnull‖2 ≥ ‖AT z‖2

with equality if and only if xnull = 0.

The above discussion leads to the following theorems. Note that a few gaps must
be filled in order to have a complete proof, see Svanberg for more details.

Theorem 1: If b ∈ ImA and KerA = 0 then the unique solution to Ax = b
can be obtained as x = (AT A)−1AT b.

Theorem 2: We have KerA = KerAT A.
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Theorem 3: If b ∈ Im A but KerA 6= 0 then the unique minimum norm solu-

tion to Ax = b can be constructed as xrow = AT z where z solves AAT z = b.
Theorem 4: We have Im A = Im AAT .

Graphical interpretation to help memorize the last two results.

PSfrag replacements

x

xrow = A
T
z

xnull

A

Im(A)

Ker(A) Ker(AT )

Im(AT ) Axrow

Figure 1. Illustration of the fundamental theorem of linear algebra.

Let us illustrate the Theorem 1 and Theorem 3 on three simple results.

Example 3.4. Consider again the system in (1.2) for the case when β = 1. We have

KerA =

{[

1
−1

]}

so we must use Theorem 3. We have

AAT z = b ⇔
[

2 2
2 2

] [

z1

z2

]

=

[

1
1

]

⇒ z =
1

2

[

α
1 − α

]

where α ∈ R is arbitrary. We get

x = AT z =
1

2

[

1 1
1 1

] [

α
1 − α

]

=
1

2

[

1
1

]

The next example shows a simple under-determined system.

Example 3.5. The equation system Ax = b with A =
[

1 1
]

and b = 1 has the

solution x = AT (AAT )−1b =
1

2

[

1
1

]

.

Our final example shows a simple over-determined system

Example 3.6. The equation system Ax = b with A = b =

[

1
1

]

has the solution

x = (AT A)−1AT b = 1.

How to determine the fundamental spaces in practice? Svanberg presents
two methods to compute the fundamental subspaces.

(1) The first method uses the Gauss-Jordan elimination to factorize the matrix
according to

A = PT

where P is an invertible matrix corresponding to elementary row operations
on A and T is a matrix on stair case form. For computation we use KerA =
KerT and Im A = P ImT . Finally, Im AT = (KerA)⊥ and KerAT =
(Im A)⊥.
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(2) A more numerically oriented method is to use the singular value decompo-
sition, see Svanberg.

We provide an example for the Gauss-Jordan method.

Example 3.7. Let

A =





1 0 1 0
0 1 1 1
1 1 2 1





Then A = PT with

P =





1 0 0
0 1 0
1 1 −1



 , T =





1 0 1 0
0 1 1 1
0 0 0 0





We see directly that

Im T = span











1
0
0



 ,





0
1
0











⇒ Im A = span











1
0
1



 ,





0
1
1











For KerA we have

KerA = KerT = Ker

([

1 0 1 0
0 1 1 1

])

There are many ways to determine this nullspace. Svanberg provides a formula.
For this simple example we use the definition and solve the equation system

[

1 0 1 0
0 1 1 1

]









α1

α2

α3

α4









= 0 ⇒
{

α3 = −α1

α4 = −α2 − α3 = α1 − α2

Hence, we have shown

KerA =























α1

α2

−α1

α1 − α2









: αk ∈ R, k = 1, 2















= span























1
0
−1
1









,









0
1
0
−1























In the same way we determine KerAT = (Im A)⊥ from the equation system

[

1 0 1
0 1 1

]





α1

α2

α3



 = 0 ⇒
{

α2 = −α1

α3 = −α1

This shows

KerAT =











1
−1
−1



 α1 : α1 ∈ R







= span











1
−1
−1











and similarly we can obtain

Im AT = span























1
0
1
0









,









0
1
1
1






















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4. Generalization to Hilbert Space

The ideas behind the fundamental theorem of linear algebra can be generalized
to Hilbert spaces. A Hilbert space is a special type of inner-product space and is
usually denoted H. In this note we concentrate on the two Hilbert spaces R

n and
Lm

2 [t0, t1], which have already been introduced. We are used to work with R
n but

the function space Lm
2 [t0, t1] has similar structure. One difference is that any basis

for Lm
2 [t0, t1] must have infinitely many elements. One possible basis representation

would be the Fourier serious expansion.
Fortunately, for the reachability and observability problems the situation is easy

and the results from the previous section are easy to generalize. The main difference
from before is that the matrices are replaced by linear operators. The formal
definition and main properties for our use is the following

Definition 4.1. A bounded linear operator A : H1 → H2 is a transformation
between the Hilbert spaces H1 and H2 that satisfies the following property. For all
v1, v2 ∈ H1 and α1, α2 ∈ R we have

A(α1v1 + α2v2) = α1Av1 + α2Av2

The boundedness assumption means that there exists c > 0 such that

‖Av‖H2
≤ c‖v‖H1

, ∀v ∈ H1

where ‖ · ‖Hk
, k = 1, 2 denotes the norm in Hilbert space Hk. The boundedness

means that A has finite amplification.

As a final definition we introduce the adjoint operator, which is a generalization
of the matrix transpose

Definition 4.2. The adjoint of a bounded linear operator A : H1 → H2 is a
bounded linear operator A∗ : H2 → H1 defined by

〈v,Aw〉
H2

= 〈A∗v, w〉
H1

, ∀v ∈ H2, w ∈ H1

Remark 4.3. There always exists a unique adjoint A∗ to any bounded linear oper-
ator.

The fundamental theorem of linear algebra can be extended to linear equations
in Hilbert space. We will here apply such a result for reachability and observability
analysis of linear systems. In reachability analysis we will encounter infinite dimen-
sional under-determined systems and in observability analysis we will encounter
infinite dimensional over-determined systems.

4.1. Reachability Analysis. In reachability analysis we consider the operator
L : Lm

2 [t0, t1] → R
n defined as

Lu =

∫ t1

t0

Φ(t1, τ)B(τ)u(τ)dτ
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where Φ(t, τ) is the transition matrix corresponding to the homogeneous system
ẋ = A(t)x. The corresponding adjoint operator L∗ : R

n → Lm
2 [t0, t1]

〈d, Lu〉
Rn = dT

∫ t1

t0

Φ(t1, τ)B(τ)u(τ)dτ

=

∫ t1

t0

(B(τ)T Φ(t1, τ)T d)T u(τ)dτ

= 〈L∗d, u〉
L2

This shows that

(L∗d)(t) = B(t)T Φ(t1, t)
T d.

The reachability problem is from a mathematical point of view equivalent to the
problem of finding u ∈ Lm

2 [t0, t1] such that Lu = d. To understand this problem
we use that the fundamental theorem of linear algebra generalizes also to the case
with bounded linear operators in Hilbert space2. In particular, if we let

Im (L) = {Lu : u ∈ Lm
2 [t0, t1]} ⊂ R

n

Ker (L) = {u ∈ Lm
2 [t0, t1] : Lu = 0} ⊂ Lm

2 [t0, t1]

Im (L∗) = {L∗x : x ∈ R
n} ⊂ Lm

2 [t0, t1]

Ker (L∗) = {x ∈ R
n : L∗x = 0} ⊂ R

n

then

Lm
2 [t0, t1] = Im (L∗) ⊕ Ker (L) R

n = Im (L) ⊕ Ker (L∗)

Im (L∗) ⊥ Ker (L) Im (L) ⊥ Ker (L∗)

dim Im (L) = dim Im (L∗)

This leads to the same graphical illustration of the mapping L as for the mapping
A in Figure 1. Note that the

PSfrag replacements

u

u1 = L
∗

λ

unull

L

Im(L)

Ker(L) Ker(L∗)

Im(L∗) Lu1

Figure 2. The main difference from Figure 1 is that the coordi-
nate system in the left hand diagram represents the infinite dimen-
sional space Lm

2 [t0, t1]. The horizontal axis is still finite dimensional
but the vertical axis is infinite dimensional. The right hand side
represents R

n.

2To learn more about this we refer to the book Optimization in vector space, by

D. G. Luenberger. Note that the material in this book is beyond the scope of this course.
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This means that the answers to our three basic questions on existence of solution,
uniqueness of solution, and construction algorithm for a solution to the equation
system Lu = d have the following answers

(a) there exists a solution iff d ∈ ImL = ImLL∗

(b) dim KerL 6= 0 so there is not a unique solution. We therefore choose the
minimum norm solution, i.e. the solution to the optimization problem

min ‖u‖2

L2
s.t. Lu = d(4.1)

(iii) The solution to (4.1) is constructed from the equation system

LL∗λ = d

u = L∗λ
(4.2)

The main point is that LL∗ ∈ R
n×n and it is thus easy to check whether d ∈

Im (LL∗) and in that case to find a suitable λ. In particular if KerLL∗ = 0
then u = L∗(LL∗)−1d.

In order to see that (4.2) in fact gives the minimum norm solution of (4.1) we take
a solution u = L∗λ + unull, where unull ∈ Ker (L). Then

‖u‖2

L2
= ‖L∗λ‖2

L2
+ 2 〈L∗λ, unull〉L2

+ ‖unull‖2

L2

= ‖L∗λ‖2

L2
+ 2 〈λ,Lunull〉L2

+ ‖unull‖2

L2

= ‖L∗λ‖2

L2
+ ‖unull‖2

L2
≥ ‖L∗λ‖2

L2

with equality if unull = 0.
In control theory we usually introduce the Gramian defined as

W (t0, t1) = LL∗ =

∫ t1

t0

Φ(t1, τ)B(τ)BT (τ)Φ(t1, τ)T dτ

The Gramian is symmetric and positive semidefinite. If it is positive definite and
thus invertible then the optimal solution in (4.2) becomes

u(t) = BT (t)Φ(t1, t)
T W (t0, t1)

−1d


