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For a linear time-invariant dynamical system

ẋ(t) = Ax(t) +Bu(t) (1)

x(0) given,

the solution is given by

x(t) = eAtx(0) +

∫ t

0

eAτBu(τ)dτ. (2)

The matrix exponential eAt is thus fundamental in describing such systems. It is defined as

eAt :=

∞∑
k=0

tk

k!
Ak.

There are (at least) three different ways to compute the matrix exponential:

i) using the definition,

ii) using the Laplace transform,

iii) diagonalization or Jordan form.

i) computing it using the definition. As we saw in first exercise session, this approach is
in general only possible in two special cases: either if the matrix is nilpotent, i.e., if Ak = 0 for
some finite value of k (for computational tractability, k needs to be a relatively small number),
or if A is a diagonal matrix.

ii) computing it using the Laplace transform. Assume u(t) ≡ 0, i.e., that u(t) = 0 for all
values of t. In this case, by (2) we see that the state trajectory is given by

x(t) = eAtx(0).

On the other hand, considering (1) and taking the Laplace transform of the differential equation
gives

sX(s)− x(0) = AX(s).
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Solving this system for X(s), and taking the inverse Laplace transform gives that

x(t) = L−1[X(s)] = L−1[(sI −A)−1x(0)] = L−1[(sI −A)−1]x(0).

By comparing the two expression, and by the uniqueness of both the solution to the ode and the
matrix exponential, we get that

eAt = L−1[(sI −A)−1].

We did an exercise on this during the exercise session. Partial fractional expansion was used in
order to get the expressions “on standard form”, which can then be found in a table over the
Laplace transform in order to get the expression for the matrix exponential.

iii) computing it using diagonalization or Jordan form. This we did not have time for
during the first exercise session, and I will therefore summarize the method here.

In short: any matrix can be written in Jordan form. That means that it can be written as

A = TJT−1 (3)

where J has the form

J =


J1 0 . . . 0
0 J2 . . . 0
...

. . .
...

0 0 . . . Jk

 ,
and where the Jis have are matrices of the form

Ji =


λi 1 0 . . . 0
0 λi 1 . . . 0
...

. . .
. . .

...
0 0 0 λi

 ,
where λi is an eigenvalue of A. Note that the same eigenvalue can occur in different submatrices
Ji and J`. Also note that the diagonalization of a matrix is a special kind of Jordan form
where each submatrix Ji is of size 1× 1 (and thus only contain an eigenvalue). Now, since J is
block-diagonal, by putting (3) into the definition of the matrix exponential, we get

eAt =

∞∑
k=0

tk

k!
(TJT−1)k = T

( ∞∑
k=0

tk

k!
Jk

)
T−1 = T diag(eJ1t, . . . , eJkt) T−1,

and due to the special structure of the matrices Ji the corresponding matrix exponentials eJit

can be computed. In order to see how this is done in practise we will do an example.

Exercise 1.5

A =

−1 0 0
0 −4 4
0 −1 0


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We start by finding the eigenvalues of A.

0 = pA(λ) = det(λI −A) =

∣∣∣∣∣∣
λ+ 1 0 0

0 λ+ 4 −4
0 1 λ

∣∣∣∣∣∣ = (λ+ 1)
(

(λ+ 4)λ+ 4
)

= (λ+ 1)(λ+ 2)2.

This gives that λ1 = −1 and λ2 = λ3 = −2.

An eigenvector to λ1 is given by

(λ1I −A)v1 = 0 ⇐⇒

0 0 0
0 3 −4
0 1 −1

 v1 = 0,

and we see that v1 = [1 0 0]T is an eigenvector.

Eigenvalues for λ2 and λ3 are sought in a similar manner:

(λ2I −A) =

−1 0 0
0 2 −4
0 1 −2

 .
However, from this one can see that dim(ker(A)) = 1, and so the geometric multiplicity of the
eigenvalues is 1, while the algebraic multiplicity is 2 (it is a double root; λ2 = λ3). Hence we
need to consider generalized eigenvalues:

(λ2I −A)v2 = 0 (4)

(λ2I −A)v3 = v2. (5)

In general, if the algebraic multiplicity of λ is m and the geometric multiplicity is 1, one con-
sider

(λI −A)v`1 = 0

(λI −A)v`2 = v`1
...

(λI −A)v`m = v`m−1 .

From (4) we get −1 0 0
0 2 −4
0 1 −2

 v2 = 0 =⇒ v2 = α

0
2
1

 ,
and putting this into (5) gives −1 0 0

0 2 −4
0 1 −2

 v3 = α

0
2
1

 .
One solution to this is α = −1 and v3 = [0 1 0]T , which gives v2 = [0 − 2 − 1]T .

Hence, the Jordan form of A is

A =
[
v1 v2 v3

]
diag(J1, J2)

[
v1 v2 v3

]−1
=

1 0 0
0 −2 1
0 −1 0

−1 0 0
0 −2 1
0 0 −2

1 0 0
0 0 −1
0 1 −2

 ,
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where the last step is simply putting in the values for v1, v2, v3, J1 = [1] and J2 =

[
−2 1
0 −2

]
,

and inverting a 3× 3 matrix.

Now, using all of this we get

eAt = TeJtT−1 = T diag(eJ1t, eJ2t) T−1

where
eJ1t = e−t

and

eJ2t = e−2It+St = e−2IteSt︸ ︷︷ ︸
Motivate for yourself why this holds

, where S =

[
0 1
0 0

]
.

Now, from the second exercise we did on the first session we know that

e−2It =

[
e−2t 0

0 e−2t

]
and from the first one we know that

eSt =

[
1 t
0 1

]
,

which gives

eJ2t =

[
e−2t 0

0 e−2t

] [
1 t
0 1

]
=

[
e−2t te−2t

0 e−2t

]
.

Finally,

eAt =

1 0 0
0 −2 1
0 −1 0

e−t 0 0
0 e−2t te−2t

0 0 e−2t

1 0 0
0 0 −1
0 1 −2

 =

e−t 0 0
0 e−2t − 2te−2t 4te−2t

0 −te−2t 2te−2t + e−2t

 .
Final remark: this exercise was solve in this way for educational purposes. However, it could
have been solved in a more clever way by first noting that one is in fact faced with two decoupled
systems:

ẋ1 = −x1[
ẋ2
ẋ3

]
=

[
−4 4
−1 0

] [
x2
x3

]
.

4


