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In this exercise, we will learn how to solve the following linear differential equa-
tion:

(0.1) ẋ(t) = A(t)x(t), x(t0) = x0, x(t) ∈ Rn, A(t) ∈ Rn×n

The equation describes an autonomous linear dynamical system. We will consider
the following two cases:

(1) Time invariant case, i.e., A(t) ≡ A (constant matrix).
(2) Time varying case, i.e., A(t) depends on the time t.

1. Solution of linear time invariant autonomous systems

Let us consider to solve

(1.1) ẋ(t) = Ax(t), x(t0) = x0, x(t) ∈ Rn, A ∈ Rn×n (A constant)

The solution to this equation can be explicitly written as

(1.2) x(t) = eA(t−t0)x0.

Now, the question is how to compute the matrix exponential eAt. Here, we will
present four methods, using

• definition of the matrix exponential,
• diagonalization or Jordan form,
• Laplace transform,
• Cayley-Hamilton Theorem.

Remark 1. In Matlab, we can compute the matrix exponential eA numerically
with the command expm.

1.1. Using the definition of the matrix exponential. Let A be a n×n matrix.
Then, given any t ∈ R, the exponential of a matrix is defined in the following way:

eAt := I +
t

1!
A+

t2

2!
A2 + · · · =

∞∑
k=0

(At)k

k!
.

For some simple matrices A, it is easy to compute the matrix exponential by using
this definition.

Example 1. (Nilpotent case) Suppose that

A =
(

0 1
0 0

)
.

It is easy to see that Ak = 0 for k ≥ 2. Therefore,

eAt = I +At =
(

1 t
0 1

)
.
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Example 2. (Diagonal case) Suppose that

A =
(

2 0
0 3

)
.

It is easy to see that

eAt =
∞∑
k=0

(At)k

k!
=

( ∑∞
k=0

(2t)k

k! 0
0

∑∞
k=0

(3t)k

k!

)
=
(
e2t 0
0 e3t

)
.

In general, if the matrix A is diagonal, that is A = diag(λ1, . . . , λn), then it is
easy to prove that:

(1.3) eAt = diag(eλ1t, ..., eλnt).

More generally, if the matrix A is block-diagonal, that is,

A =


A1 0 . . . 0
0 A2 . . . 0
...

...
. . .

...
0 0 . . . Am

 = diag(A1, ..., Am)

then,
Ak = diag(Ak1 , ..., A

k
m) and eAt = diag(eA1t, ..., eAmt).

1.2. Using diagonalization or Jordan form. It is well-known that any matrix
A can always be transformed into a block diagonal form J by a similarity transfor-
mation with an appropriate nonsingular matrix T as

(1.4) J = T−1AT, or A = TJT−1.

1.2.1. Diagonalizable A. Let us suppose that the matrix A has n independent eigen-
vectors, vi. Then, there exists a matrix T = [v1...vn] such that:

(1.5) T−1AT = D = diag(λ1, ..., λn),

where λi are the eigenvalues of A. In this case, it is easy to show that:

(1.6) eAt = eTDT
−1t = Tdiag(eλ1t, ..., eλnt)T−1.

Example 3. Let

A =
(

0 1
−2 −3

)
To compute eAt, note that the characteristic polynomial of A is:

χA(λ) = det(λI −A) = (λ+ 1)(λ+ 2)⇒ λ1 = −1, λ2 = −2

So, the eigenvalues of A are −1 and −2, and the corresponding eigenvectors are
[1,−1]T and [1,−2]T , respectively. Thus, A can be diagonalized by a similarity
transformation as

(1.7) A =
(

1 1
−1 −2

)
︸ ︷︷ ︸

T

(
−1 0
0 −2

)
︸ ︷︷ ︸

D

(
1 1
−1 −2

)−1

︸ ︷︷ ︸
T−1

.
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Using (1.6),

eAt =
(

1 1
−1 −2

)(
e−t 0
0 e−2t

)(
1 1
−1 −2

)−1

(1.8)

=
(

2e−t − e−2t e−t − e−2t

−2e−t + 2e−2t −e−t + 2e−2t

)
.(1.9)

1.2.2. Jordan form for A. It is always possible to find a nonsingular matrix T such
that J = T−1AT is in Jordan canonical form:

J =



λ1 1 0 0 0 0 . . .

0
. . . 1 0 0 0 . . .

0 0 λ1 0 0 0 . . .
...

...
...

. . .
...

...
. . .

0 0 . . . 0 λk 1 . . .

0 0 . . . 0 0
. . . 1

0 0 . . . 0 0 0 λk


= diag(J1, ..., Jk)

and so the problem is reduced to calculate the exponential of each Jordan block Jj .
The Jordan blocks Jj have the following form:

Jj =


λj 1 0 0 . . .
0 λj 1 0 . . .
...

...
...

...
. . .

0 0 . . . λj 1
0 0 0 . . . λj

 = λjI + Sj

where Sj is a shift matrix:

Sj =


0 1 0 0 . . .
0 0 1 0 . . .
...

...
...

...
. . .

0 0 . . . 0 1
0 0 0 . . . 0


with the property that Sij = 0 for i ≥ dj where dj is the dimension of Sj . Therefore,
we have that:

eJjt = eλjteSjt = eλjt
(
I + Sjt+

(Sjt)2

2
+ . . .+

(Sjt)dj−1

(dj − 1)!

)
(1.10)

= eλjt



1 t t2/2 · · · tdj−1

(dj−1)!

0 1 t
. . .

...
...

. . . . . . . . . t2/2
...

. . . . . . . . . t
0 · · · · · · 0 1


.

Remark 2. To learn how to obtain a Jordan form from a general matrix, see “Jor-
dandekomposition” in “Kopior p̊a overheadbilder” by C. Trygger.
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Example 4. Let A be

(1.11) A =

 −1 1 0
0 −1 1
0 0 −1


which is already in a Jordan form. From (1.10), we have

(1.12) eAt = e−t

 1 t t2/2
0 1 t
0 0 1


1.3. Using Laplace transform. The matrix exponential eAt can be obtained by

(1.13) eAt = L−1{(sI −A)−1},

where L−1 means the inverse Laplace transform.

Remark 3. See the table for the Laplace transform in, for example, “BETA: Math-
ematics Handbook for Science and Engineering.”

Example 5. Let us again consider the matrix

(1.14) A =
(

0 1
−2 −3

)
.

Then,

(1.15) (sI −A)−1 =
(
s −1
2 s+ 3

)−1

=
1

s2 + 3s+ 2

(
s+ 3 1
−2 s

)
.

Now, we decompose this with a partial fraction expansion:

(1.16)
1

s2 + 3s+ 2

(
s+ 3 1
−2 s

)
=

1
s+ 1

(
2 1
−2 −1

)
+

1
s+ 2

(
−1 −1
2 2

)
.

Therefore,

eAt = L−1
{

(sI −A)−1
}

(1.17)

= L−1

(
1

s+ 1

)(
2 1
−2 −1

)
+ L−1

(
1

s+ 2

)(
−1 −1
2 2

)
(1.18)

= e−t
(

2 1
−2 −1

)
+ e−2t

(
−1 −1
2 2

)
.(1.19)

Example 6. Consider the matrix

(1.20) A =
(

σ ω
−ω σ

)
.

Then,

(1.21) (sI −A)−1 =
(
s− σ −ω
ω s− σ

)−1

=
1

(s− σ)2 + ω2

(
s− σ ω
−ω s− σ

)
.

Using the inverse Laplace transform formula, we have

(1.22) eAt = L−1
{

(sI −A)−1
}

=
(

eσt cos(ωt) eσt sin(ωt)
−eσt sin(ωt) eσt cos(ωt)

)
.
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1.4. Using Cayley-Hamilton Theorem.

Theorem 1. Any square matrix A satisfies its characteristic polynomial.

In other words, given the characteristic polynomial of the matrix A ∈ Rn×n:

χA(λ) = det(λI −A) = λn + a1 + λn−1 + . . .+ an

then:
χA(A) = An + a1A

n−1 + . . .+ anI = 0

Remark 4. The theorem has two important consequences:
1: An = −a1A

n−1 − a2A
n−2 − ...− anI.

2: Every matrix polynomial ψ(A) of order n+ i, i ≥ 0 can be expressed by an
(n−1)-order polynomial. Another implication is that eAt is an infinity order
polynomial which can also be expressed as an (n− 1)-order polynomial.

Theorem 2. Let λi, i = 1, ..,m be the eigenvalues of an n×n matrix of multiplicity
ni, i.e.

χA(λ) =
m∏
i=1

(λ− λi)ni and
m∑
i=1

ni = n

Let also f(λ) and g(λ) be polynomials of λ such that:

(1.23)
dk

dλk
f(λ)|λ=λi =

dk

dλk
g(λ)|λ=λi , ∀ i = 1, ...,m, k = 0, ..., ni − 1

Then f(A) = g(A).

Remark 5. The previous theorem can be used to find a (n − 1)-order polynomial
g(λ) corresponding to a (possibly high order) polynomial function f(A). To this
end, note that Eq. (1.23) constitutes n equations, from which n coefficients of g(λ)
can be found.

Example 7. In this simple example we are going to see how the Cayley-Hamilton
theorem is used to compute a matrix exponential. Consider again the matrix

A =
(

0 1
−2 −3

)
,

where n = 2. To compute eAt, note that the characteristic polynomial of A is:

χA(λ) = det(λI −A) = (λ+ 1)(λ+ 2)⇒ λ1 = −1, λ2 = −2

Let f(λ) := eλt. We are looking for a first-order polynomial g(λ) = g1λ + g0 such
that Eq. (1.23) is satisfied. That is:

g(λi) = eλi , i = 1, 2

The coefficients g0 and g1 can be found from:{
g1λ1 + g0 = eλ1t

g1λ2 + g0 = eλ2t ⇔
{
−g1 + g0 = e−t

−2g1 + g0 = e−2t ⇔
{
g0 = 2e−t − e−2t

g1 = e−t − e−2t

Due to Theorem 2, we have f(A) = g(A), that is,

eAt = g1A+ g0I =
(

2e−t − e−2t e−t − e−2t

−2(e−t − e−2t) −(e−t − 2e−2t)

)
.
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Example 8. Let us consider the following matrix A:

A =



0 1 . . .
0 0 . . .

. . . 0 1 . . .

. . . −1 0 . . .

. . . 0 0 −2

. . . 0 1 0

. . . 1 0 3


We want to determine the transition matrix Φ(t, s).

First of all, we should note that A is a constant block diagonal matrix, that is
A = diag(A1, A2, A3) where:

A1 =
(

0 1
0 0

)
, A2 =

(
0 1
−1 0

)
, A3 =

 0 0 −2
0 1 0
1 0 3


and so we have that Φ(t, s) = eA(t−s) = diag(eA1(t−s), eA2(t−s), eA3(t−s)). Hence,
let us compute each block one by one:

1: A1 is a shift matrix, that is A2
1 = 0. Therefore:

eA1t = I +A1t

2: A2 is a typical case of oscillatory solution. In general, given a 2× 2 matrix
F which has a couple of complex conjugate eigenvalues, λ1,2 = σ ± jω, it
is always possible to find a change of basis so that F can be written in the
form:

F =
(

σ ω
−ω σ

)
From Example 6,

eFt =
(

eσt cos(ωt) eσt sin(ωt)
−eσt sin(ωt) eσt cos(ωt)

)
Therefore:

eA2t =
(

cos(t) sin(t)
− sin(t) cos(t)

)
3: To compute eA3t we can use the Cayley-Hamilton theorem. First, let us

compute the eigenvalues of A3:

det(λI −A) = (λ− 1)2(λ− 2)

and so we have the eigenvalue λ1 = 1 with multiplicity 2, and the eigenvalue
λ2 = 2 with multiplicity 1.

We are thus looking for a 2-nd order polynomial g(λ) = g2λ
2 + g1λ+ g0

such that:

g(λ1) = eλ1t,
d

dλ
g(λ)|λ=λ1 =

d

dλ
eλt|λ=λ1 , and g(λ2) = eλ2t

By substituting the numerical values we get: g2 + g1 + g0 = et

2g2 + g1 = tet

4g2 + 2g1 + g0 = e2t
→

 g0 = −2tet + e2t

g1 = 2et + 3tet − 2e2t

g2 = −et − tet + e2t
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Finally, we have that:

eA3t = (−2tet + e2t)I + (3tet + 2e2 − 2e2t)A+ (e2t − et − tet)A2

2. Solution of linear time varying autonomous systems

In the time varying case, the solution to the linear system with input

(2.1) ẋ(t) = A(t)x(t) +B(t)u(t)

is written as

(2.2) x(t) = Φ(t, t0)x(0) +
∫ t

t0

Φ(t, τ)B(τ)u(τ)dτ,

where Φ(t, s) is a transition matrix. The question is how to compute this transition
matrix.

If matrices A(t) and
∫ t
s
A(τ)dτ commute, then Φ(t, s) can be computed by

(2.3) Φ(t, s) = e
∫ t
s
A(τ)dτ .

Remark 6. Note that, in the time invariant case (constant A), this reduces to

(2.4) Φ(t, s) = eA(t−s).

Example 9. (Exercise (1.13)) Let us consider the following linear time varying
system (LTV):

ẋ(t) =
(

cos(t)− 4/t −1/t
4/t cos(t)

)
x(t) = A(t)x(t)

We want to determine the transition matrix Φ(t, s).
We can express A(t) as:

A(t) = cos(t)
(

1 0
0 1

)
+

1
t

(
−4 −1
4 0

)
= I cos(t) +K

1
t

First, let us compute the integral of A(t):

B(t, s) =
∫ t

s

(I cos(τ) +
1
τ
K)dτ = (sin(t)− sin(s))I + ln(

t

s
)K

Note that B(t, s) and A commute, that is A(t)B(t, s) = B(t, s)A(t). In such a case,
see remark 2.1.3 in the compendium, the transition matrix is:

Φ(t, s) = exp(B(t, s)) = exp((sin(t)− sin(s))I + ln(
t

s
)K)

Note that K and I commute. To calculate exp(ln( ts )K) we can use the Laplace
transform:

exK = L−1

{(
s+ 4 1
−4 s

)−1
}

=
(

(1− 2x) −x
4x 1 + 2x

)
e−2x

So, by setting x = ln(t/s) we get:

Φ(t, s) = exp(sin(t)− sin(s))
s2

t2

(
1− 2 ln(t/s) − ln(t/s)

4 ln(t/s) 1 + 2 ln(t/s)

)
The following is an example where matrices A(t) and

∫ t
s
A(τ)dτ do not commute.
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Example 10. (Exercise (1.14)) Let us consider the following LTV system:

ẋ(t) =
(

0 0
t 1/t

)
x(t) +

(
0
1

)
u(t) = A(t)x(t) +Bu(t)

We want to determine the transition matrix Φ(t, s).
Like before, let us compute the following integral:

B(t, s) =
∫ t

s

A(τ)dτ =
(

0 0
(t2 − s2)/2 ln( ts )

)
Do B(t, s) and A commute?

[A(t), B(t, s)] := A(t)B(t, s)−B(t, s)A(t)

=

(
0 0

(t2−s2)
(2t)

1
t ln( ts )

)
−
(

0 0
t ln( ts ) 1

t ln( ts )

)
6= 0

Unfortunately in this case they do not commute, and so we cannot use the
formula (2.3) to compute the transition matrix. However, in this example, we can
compute the transition matrix in the following way.

ẋ1 = 0→ x1 = x10

ẋ2 = tx1 +
1
t
x2

The solution of x2(t) can be computed using standard solution formula (2.2),
with the transition matrix for the system equation for x2:

(2.5) Φ2(t, s) := e
∫ t
s

1/τdτ = t/s.

Therefore,

x2(t) = Φ2(t, t0)x20 +
∫ t

t0

Φ2(t, τ) · τx10dτ,(2.6)

=
t

t0
x20 + t(t− t0)x10.(2.7)

We have

(2.8)
(
x1(t)
x2(t)

)
=
(

1 0
t(t− t0) t/t0

)(
x10

x20

)
.

Therefore, the transition matrix is given by:

Φ(t, s) =
(

1 0
t(t− s) t/s

)
.


