SYSTEMTEORI - QVNING 2

GIANANTONIO BORTOLIN AND RYOZO NAGAMUNE

1. SUMMARY ON HOW TO CHECK REACHABILITY AND OBSERVABILITY

Consider the linear time-varying system

(L1) { #(t) = A(t)z(t) + Bt)u(t), =z(t)eR"
' yt) = C@)z(t) + D(t)u(t).
For this system, we form reachability and observability Gramians:
t1
(1.2) Wt t1) = /t (11, 5)B(s)BT (5)87 (1, s)ds
(1.3) M(to,t1) = /tl &7 (t1,5)CT (5)C(s)®(t1, 5)ds,
to

where ®(t, s) is the transition matrix of the system.

Reachability. The state transfer from z(tg) = zo to x(t1) = x1 is possible if and
only if

(14) xr1 — q’(tl,to).’ﬂo S ImW(to,tl).

In particular, for time-invariant systems, let R be the reachable subspace
defined by

(1.5) R:=Im [B,AB,--- ,A"'B].
Then, the state transfer from any xzo € R to any z1 € R is possible in any time
e> 0.
Observability. For a given input, the initial states z(t9) = a and z(ty) = b
produce the same output on [tg,#1] if and only if
(16) a—be keI‘M(to,tl).

In particular, in time-invariant cases, for any tg,t; (to < 1),

c
CA

(1.7 kerM (tg,t1) = ker . ,
CAn—l

which is called the unobservable subspace.
1
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2. REACHABILITY EXAMPLES

Exercise 2.1 (LTV case). Let us consider the following LTV system:

. 0 0 1
z(t) = ( Y ) z(t) + ( 0 ) u(t) = A(t)z(t) + Bu(t), t>0.
Given the initial state z(tg) = o, which states z(t1) are reachable?

A state z(t1) is reachable if and only if
.’L'(tl) — <I>(t1, to)(l,'o S IInW(to, tl)
where W (to,t1) is the reachability Gramian defined as:
t1
(2.1) W ko, t1) = / (11, 5)B(s) BT ()87 (11, )ds
to

In the last example of f)vning 1, we obtained, for this system, the transition matrix

®(t,s) as
1 0
(t,5) = ( tt—s) t/s )
So, the Gramian is

Wlto.tr) = /: ( tl(tll— 5) tlo/s ) ( (1’ ) (r0) ( (1’ tl(ﬁ/; K )ds

1 t (t1—to)
t1 — 1 2 .
( 1 0) < t (tlgto) é(tl _ t0)2

The first trial is to check if the Gramian has full rank, by taking its determinant:

t2
(22) det W(to,tl) = (tl - t0)4 . 1—12
Since t; > tg > 0, the determinant is nonzero, and therefore, the Gramian has full
rank. So, the entire space R? is reachable.

Another way to determine the image of the Gramian is to use elementary col-

umn/row operations to obtain a matrix of a triangular (stair-case) form:

1 —t, ato) 1 0
to,t T )= :
W (to, 1) ( 0 1 e

~

1.

~~

=:P
Since P is nonsingular, the rank of W and that of the matrix in the right-hand side
are the same.

Exercise 2.3 (LTI case). Under what conditions on b the system:

A1 0 by
z(t)=Az(t)+bu(t) = 0 X 1 [z(t)+bu(t), b= bo
0 0 X b3

is completely reachable?

INote that W (to,%1) has to be symmetrical and positive semidefinite for tg < ¢1



SYSTEMTEORI - OVNING 2 3

Note that in this case the system is LTI, and therefore,
ImW(thtl) =Im [B,AB, ...,An_lB] =Im7T

We want the system to be completely reachable, that is we want that Im I' = R3.
The most straightforward method to solve this exercise is to calculate I" and check
when det I" # 0:

b1 by + bs )\2b1 + 2Xbsy + b3
I'= by Aby + b3 )\2b2 + 2)\b3 = detI'= —bg
bs Abs A2bs

Therefore, the system is completely reachable if and only if b3 # 0.2

Exercise (LTI case with multiple inputs). Consider the LTI system:

-2 2 0 0 2
(2.3) gt)=| 0 —05 05 |a@®)+[ 05 05 |u)
1 -15 —05 05 —1.5
~ - —_———
A B

Obtain the reachable subspace for this system.

A procedure to obtain the reachable subspace R is as follows.

(1) Form the reachability matrix

0o 2 1 -3 -2 4
(24) T':=[B,AB,A’B]=|05 05 0 -1 —05 15
05 -15 -1 2 15 =25

The reachable subspace R is ImI', but in this example, it is not so trivial
to figure out what ImI is.

(2) By elementary column/row operations, transform I' into a triangular form,
for which we can easily see the image space. To this end:

21t is also possible to solve this exercise using a small trick. Note that the matrix A is in
Jordan canonical form with a single eigenvalue A with multiplicity equal to 3. Let us introduce
the auxiliary variable Z(t) as:

E(t) = e Ma(t)

Since e~*t # 0 Vt, the variables z(t) and #(t) have the same reachability properties. We have
that:

Z(t) = e Ma(t) + e Mi(t) = SE(t) + bu(t)e M = Sz + ba(t)
where the matrix S is defined as:
0O 1 0
0 0 1
0 0 0

So, we can study the reachability of £ which is easier to compute:

; bi by b3
I =[b5b,5% =] bo b3 0
bs O 0

and clearly T" is full rank if and only if bs # 0.
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(a) Swap the first and the second rows. This corresponds to a matrix
multiplication from the left of T':

010 0.5 0.5 0 -1 -05 1.5
I'i'=]110 0 |I'= 0 2 1 -3 -2 4
0 01 056 —-15 -1 2 1.5 =25

(b) Make the (1,1) entry become 1. This corresponds to a matrix multi-
plication from the left of I';:

2 0 0 1 1 0o -2 -1 3
I's:=]10 1 0|1 = 0 2 1 -3 -2 4
0 0 1 05 —-15 -1 2 15 =25
—_——
Py

(¢) In order to make the (3,1) entry become zero, we use
(new third row) = (first row) — 2 x (third row).

This corresponds to a matrix multiplication from the left of I's:

1 0 0 1 10 -2 -1 3
I's=10 1 0 I's=10 21 -3 -2 4
1 0 -2 0 4 2 -6 —4 8
—_——
Ps

(d) We can easily see that
(third row) = 2 x (second row).

So, in order to make the third row to be zero, we multiply I's by a
matrix from the left:

1 0 0 1 10 -2 -1 3
I'y: =10 1 0 I's=10 2 1 -3 -2 4
0 2 -1 00 0 O 0 0

Py

Now it is trivial that ImI'y = span{ey,e2}.

(3) Obtain the reachable subspace by tracing back the matrix multiplications:

(2.10)

ImI' = Im(P['Py'Py'P'Ty)
= Im((P4P3P,P)"'Ty)
= Im((P4P3P2P1)_1 [61,62]).

By a calculation,

0 1 0
(PP3PP) =05 0 0
0.5 -1 0.5
Therefore,
0 1 0 1
ImI" = span 05 (,] O = span 1(,] O

0.5 -1 1 -1
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Exercise (Decomposition theorem). Let us consider the following LTI system:

0 000 0 0

. 0 00O 01

#(t) = 010 0 z(t) + 0 0 u(t) = Az(t) + Bu(t)
1 0 01 10

The reachability matrix is:

I = [B,AB, A?B, A%B] =

= o oo
SO = O
= o oo
o= OO
= o oo
OO oo
= o oo
jeren R en B en)

It is easy to see that I" has rank 3, and so the system is not completely reachable.
Therefore we can write:

RE=R@V

where R is the reachable subspace, and V is a complement. Here we want to give
an example of the decomposition theorem described in the Example 3.2.9 in the
compendium. To this end, we want to express the system in a new basis such that
the first 3 vectors span R, and the remaining one spans ). Let us determine a basis
of the reachable space R and for a complement V in R*:

0 0 0 1
0 0 1 0
R = span ol 11110 , V =span 0
1 0 0 0

Then, we define the transformation matrix 7" in the following way:

0 0 01
0 010
T_OIOO
1 0 00

In the new basis (or by setting x := T'2) the system matrices have the following
form:

E N
I

o]
I

It is easy to see that the subsystem _(All, By) is completely reachable, and its
reachable space is R. The subsystem (Ass, 0) is the unreachable part of the system.
Its dynamics cannot be influenced by the input u(t), and depend only on the initial

state xg.
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3. OBSERVABILITY EXAMPLES

Exercise 2.5.

A rough description of the movement of a hot air
balloon is

(3.1)

where

(a)

(3.2)

(3.4)

6 10+
1.') —Ev+00+}3w
h = wv,

: temperature

: heating

: vertical velocity

: height

: vertical wind velocity
a,f,0 : given positive constants

g > e

Assume that the wind velocity w is constant but unknown. Is it then
possible to reconstruct § and w through observations of the height h?

To answer this question, we set up a problem on observability of 6 and
w. This means that the state vector should include 8 and w, and the output
is h.

6 -1 0 00 G 1
. 1 1
O S L A R N 0
h o L oo ||n|T|o]|"™
W 0 0 00)]|w 0
0
v
y = [0010]|]
w

To be able to reconstruct 8 and w from h, the condition is

1 0
0 0
span NEE 1 ker(2,
0 1
where (2 is the observability matrix:
C 0 0 1 0
q. ca | 0 11 0 (1)
T o4 | T o -5 0 3
3 fod el 1 1
cA ~(2+5) % 0 -&

Since Q is full rank, kerQ2 = {0}, and therefore, we can reconstruct § and
w from h.
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(b) Assume that w = 0. Is the system completely reachable?

In (3.2), we delete the column/row related to w:

é -1 0 0 6 1
(3.6) b |=| o -5 0 v |+]|0|u
h 0 1 0 h 0
The reachability matrix is
1 -1 L
(3.7) I:=[B,AB,A’B]=| 0 o _(%Jr%) ,
0 0 o

which is (obviously!) full rank. Hence the system is completely reachable.

Exercise 2.7. Consider the system:

{ &(t) = A()x(t) + B(t)u(t), x(to) = o
y(t) C(t)x(t) + D(t)u(t)

Denote with ®(t,s) the transition matrix, and define the observability Gramian:

t1
Mito,t) 2 [ 87 (1,10)CT (OC(0)B(t,t0)de
to
(a): Show that we can distinguish between the initial points z(ty) = a and
z(to) = b iff b— a & ker M (to,t1).

Define the linear operator T : R* — ), where ) is the space of m-
dimensional, square-integrable functions on [tg, 1], as:

(Tzo)(t) £ C(t)®(t, t0)0

The adjoint operator, T* : Y — R" is then defined as (see compendium):

t1
Ty = [ 877 ()t
to
From the compendium we know that it is not possible to distinguish
between the two initial conditions if and only if

T@)=Tb)= Ta-b)=0= a—-bekerT

Since Y is an infinite dimensional space, the operator 7' does not have a
finite dimensional matrix representation. So, instead of considering T, let
us consider the linear operator T*7T : R® — R™. T™*T is defined as:

T*T(zy) = / BT (4, 10)CT (OO (8)B (¢, t0)d 7o,

to

~ >

M(to,t1)

Therefore, it is enough to show that ker T' = ker T*T'. Let us first show
that ker T' C ker T*T. Suppose that Tz = 0, then we have that:

T*Te=T*0=0 =kerT Cker T*T
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Next, let us show that ker T*T C ker T'. Suppose that T*Tx = 0. Then
we have that:

(2, T*Tx)pn = 0= (T2, T2)y =0=>T2=0 =kerT*T Cker T

Hence, ker T*T = ker T
(b): Suppose that the matrices A and C are constant. Consider the observ-
ability matrix 2 and show that ker M (tg,t;) = ker .

Fix to and ¢, and let M £ M (to,t;). Proceeding as before, let us first
show that ker M C ker Q. Let a € ker M. Then:

i1 t1
0=a"Ma= / aTeA" (t=t0) 0T CeAlt=to) gt = / |CeAtt—to) || 2dt
to tO

Since the integrand is non-negative and continuous it must be that:
CeAlt=t)gq =0Vt € [to, t1]

If we take the Taylor expansion of the exponential we get:
o
1
> (= to)"CA¥a=0= CA¥a=0 k=1,..,n=a € kerQ
k=0 """
Next, let us show that ker Q C ker M. This is equivalent to show that
Im M C Im Q. (Note that M = M?T.) Suppose then that a € Im M.
Then, there is a vector z € R™ such that:

o0 tl 1
a=Mz= Z(AT)’“CT/ —=(t —to)*Cet 1)zt
0 k!
k=0 0
Therefore we have that a € Im [CT, ATCT, (AT)2CT,---]. But for the

Cayley-Hamilton theorem we get that:
a € Im[CT, ATCT ... (AT)"=10T] = ImQT
So, in conclusion we have that ker M = ker (2
(c): Define the “quiet” subspace S as S £ ker (. Partition the state space
as R = V@ S where V = St. Then, show that S is A-invariant and

determine the block-matrix representation of the system corresponding to
the subspace above. Apply the previous result to the following system:

2 4 3 1 0

i) = [ 4 2 3 Ja@®)+| -1 3 |u@
4 4 4 0 2

) = (2 2 -3)a@)

Let us consider the quiet, or unobservable subspace S. We have that:
(1) S is A-invariant. Assuming z € ker(), we will prove Az € ker().

c CA

cA C A?
r=0 = QAz = . z=0.

CAr-t CA™

The last equality is a consequence of the Cayley-Hamilton theorem.
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(2) Block-matrix representation of the system. Suppose that S has
dimension d. Then, choose a basis for R” such that the first n—d vector
are a basis for V, and the remaining d vectors are a basis for S. Then,
we can partition each vector x as « = [z}, x5’ with z» d-dimensional.
We will show that in this basis the system has the structure:

i) = ( oy )x(t) + ( o )u(t),
yt) = (Ci 0)z(t)+ Du(t).

An arbitrary vector z € S can be written as:

==

and if we multiply it by A:
| A Agg 0 | [ Ar2ze _ .

Az = [ Ayy Ay 2o | = | Ay = A5 =0 since Az € S
Besides, we have that:
Cz=[C (5] [n? =0 sincexeS =C>=0

2 J
(3) An example: Compute the observability matrix §:
C ] 2 2 -3
Q=| CA |=[0 0 0
CA? | 00 O
Then, let us find a basis for the unobservable subspace
1 0
ker Q@ = {z : 2z1 + 2z3 — 323 = 0} = span -11,] 3
0 2

A Dbasis vector for the subspace V can be computed with the cross
product:

1 0 e; €y e -2
-1 |x|3]|]=|]1 -1 0 |=| -2
0 2 0o 3 2 3

We can then build the matrix 7" for the change of basis:

-2 1 0
T=]-2 -1 3
3 0 2

Let us call z = T~ 'z the new state variable. We have that:

0|0 o0 00
) = | —3[=2 18 |20)+ (1T 0 |u®),
—2] 0 10 0 1

-~

T-1AT T-'B

(=17]0 0)z().
cT

<

—~
o~

~
I
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(3.8)
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(d): Show that the pair (4, C) is completely observable if and only if®

Cq# 0 for any right eigenvector q of A (i.e., Ag = \q).

First, assume that there is some right eigenvector q of A satisfying C'q =
0, and prove that (A, C) is not completely observable. In this case,

c 0
cA 0

Qq - : 7= :
CAn-1 0

This means that  is column rank deficient, and (A, C) is not completely
observable.

Next, conversely, assume that the system is not completely observable.
Then, the system can be transformed, by a variable change z = Tz, into
the one having the following block structure:

0= (40 0 )=0. so=( 0):0
Ai=T-14T C=cT

Defining

=]
w |’
where w is any eigenvector of Asa, we can verify
AGg=X = A(Tq) =\T9
Ci=0 = CT9 =0
Thus, there exists a right eigenvector q := 7' of A that satisfies C'q = 0.

3The condition is known to be the PBH (Popov-Belewitch-Hautus) test. The PBH test for
reachability is as follows: The pair (A, B) is completely reachable if and only if ¢* B # 0 for any
left eigenvector ¢* of A (i.e., ¢*A = Ag*).



