
SYSTEMTEORI - THE KALMAN FILTER

1. Examples

1.1. 7.5. Let y be a stochastic process given by the system:

x(t + 1) = Ax(t) + Bv(t)

y(t) = Cx(t) + Dv(t)

where x(0) and v(t) satisfies the usual assumptions. Determine a Kalman filter for
this case.

Note that in the normal Kalman filter framework we have the following assump-
tions:

1: x(0) = x0

2: Ex0x
T
0 = P0

3: Ex0 = 0
4: Ev(t)vT (s) = δt,s

5: x0 and v(t) uncorrelated gaussian processes.

We will determine a recursive algorithm to compute the prediction x̂(t + 1) given
x̂(t) and y(t). We will follow the same method as in chapter 9 of the compendium,
and therefore we will use the same notation. We have that:

x̂(t + 1) = EHt(y)x(t + 1) = {remember that Ht(y) = Ht−1 ⊕ [ỹ(t)]}

= EHt−1(y)x(t + 1) + E[ỹ(t)]x(t + 1)

= EHt−1(y)(Ax(t) + Bv(t)) + E ỹ(t)x(t + 1) = Ax̂(t) + K(t)ỹ(t)

First, let us write ỹ(t) in a different way:

ỹ(t) = y(t) − EHt−1(y)y(t) = y(t) − EHt−1y(Cx(t) + Dv(t))

= y(t) − Cx̂(t) = Cx̃(t) + Dv(t)

Then, we can determine K(t) with the Projection Theorem. Note that since
E[ỹ(t)]x(t + 1) = K(t)ỹ(t), we have by the Projection Theorem that

x(t + 1) − K(t)ỹ(t) ⊥ ỹ(t),

and hence

E
[

(x(t + 1) − K(t)ỹ(t))ỹ(t)T
]

= 0

⇒ Ex(t + 1)ỹ(t) = K(t)Eỹ(t)ỹ(t)T

⇒ K(t) = Ex(t + 1)ỹ(t)T [Eỹ(t)ỹ(t)T ]−1

1
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We need to determine the quantities Ex(t + 1)ỹ(t)T and Eỹ(t)ỹ(t)T :

Ex(t + 1)ỹ(t)T = E(Ax(t) + Bv(t))(x̃(t)T CT + v(t)T DT )

= E(Ax̃(t) + Ax̂(t) + Bv(t))(x̃(t)T CT + v(t)T DT )

= AEx̃(t)x̃(t)T CT + BEv(t)v(t)T DT

= AP (t)CT + BDT

where P (t) , Ex̃(t)x̃(t)T . Then, we have that:

Eỹ(t)ỹ(t)T = E(Cx̃(t) + Dv(t))(x̃(t)T CT + v(t)T DT )

= CEx̃(t)x̃(t)T CT + DEv(t)v(t)T DT

= CP (t)CT + DDT

So, we have the following:

K(t) = (AP (t)CT + BDT )(CP (t)CT + DDT )−1

Finally, we need to determine a recursive equation for P (t). First, let us determine
the dynamic of x̃(t). We have that:

x̃(t + 1) = x(t + 1) − x̂(t + 1)

= Ax(t) + Bv(t) − Ax̂(t) − K(t)(Cx̃(t) + Dv(t))

= (A − K(t)C)x̃(t) + (B − K(t)D)v(t)

Hence, the dynamic for P (t + 1) is:

P (t + 1) = Ex̃(t + 1)x̃T (t + 1)

= E[(A − K(t)C)x̃(t) + (B − K(t)D)v(t)][x̃(t)T (A − K(t)C)T + v(t)T (B − K(t)D)T ]

= (A − K(t)C)P (t)(A − K(t)C)T + (B − K(t)D)(B − K(t)D)T ,

which after some manipulations and by replacing K(t) turns out to be

P (t+1) = AP (t)AT−(AP (t)CT +BDT )(CP (t)CT +DDT )−1(AP (t)CT +BDT )T +BBT .

1.2. 7.1. Consider the following system:

x(t + 1) = Ax(t) + Bv(t)

y(t) = Cx(t)

with

x(0) = x0

Ev(t)vT (s) = δt,sI

Ex0x
T
0 = P0

and x0 and v(t) uncorrelated, zero mean Gaussian variables.

a: Determine the Kalman filter for this case, and show that the usual Kalman
filter converges at this one when D → 0.

b: Use the previous result for the following scalar case:

x(t + 1) =
1

2
x(t) + v(t)

y(t) = x(t)
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a: We will obtain the Kalman filter in the same way as in the previous exercise.
We have that:

x̂(t + 1) = EHt(y)x(t + 1) = EHt−1(y)x(t + 1) + E[ỹ]x(t + 1) = Ax̂(t) + Ktỹ(t)

where:

ỹ(t) = y(t) − EHt−1(y)y(t) = y(t) − EHt−1(Cx(t)) = y(t) − Cx̂(t) = Cx̃(t)

The projection theorem gives:

K(t) = Ex(t + 1)ỹ(t)T (Eỹ(t)ỹ(t)T )−1

Besides, we have that:

Ex(t+1)ỹ(t)T = Ex̃(t+1)ỹ(t)T +Ex̂(t+1)ỹ(t)T = E(Ax̃(t)+Bv(t))(x̃(t)T CT ) = AP (t)CT

Then, we have that:

Eỹ(t)ỹ(t)T = E(Cx̃(t))(x̃(t)T CT ) = CEx̃(t)x̃(t)T CT = CPtC
T

So, we have the following:

K(t) = (AP (t)CT )(CP (t)CT )−1

Finally, we need to determine a recursive equation for P (t). First, let us
determine the dynamic of x̃(t). We have that:

x̃(t + 1) = x(t + 1) − x̂(t + 1) = Ax(t) + Bv(t) − Ax̂(t) − K(t)(Cx̃(t))

= (A − K(t)C)x̃(t) + Bv(t)

Hence, the dynamic for P (t + 1) is:

P (t + 1) = Ex̃(t + 1)x̃T (t + 1)

= (A − K(t)C)P (t)(A − K(t)C)T + BBT

If we insert the value for K(t) we have found previously, we get that:

P (t + 1) = AP (t)AT − AP (t)CT (CP (t)CT )−1CP (t)AT + BBT

which is exactly the usual Kalman filter when D → 0
b: In this case we have

A =
1

2
, B = 1, C = 1

By applying the previous results we get that:

K(t) =
1

2
P (t)P (t)−1 =

1

2

and

P (t + 1) =

(

1

4
P (t) −

1

4

)

P (t) + 1 = 1

So, the optimal filter is:

x̂(t + 1) =
1

2
y(t)
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1.3. Es. 3. Consider two unknown but correlated constants, x1 and x2. We wish
to determine the improvement in the knowledge of x1 which is possible through a
single noisy measurement of x2. The vector and matrix quantities of interest are:

x =

[

x1

x2

]

, P0 =

[

σ2
1 σ2

12

σ2
12 σ2

2

]

and let r be the covariance of the measurement noise.

We can rewrite the problem in the following way:

x(t + 1) = x(t)

y(t) =
[

0 1
]

x(t) + rv(t)

P0 is the covariance matrix describing the uncertainty in x before the measurement.
That is, σ2

1 is the initial mean square error in knowledge of x1, σ2
2 is the initial

mean square error in knowledge of x2, and σ12 measures the corresponding cross-
correlation.

After one measurement, the updated covariance matrix, P (1), is given by:

P (1) =





σ2
1(

σ2

2
(1−ρ2)+r2

σ2

2
+r2

) σ2
12(

r2

σ2

2
+r2

)

σ2
12(

r2

σ2

2
+r2

) σ2
2( r2

σ2

2
+r2

)





where ρ is the correlation coefficient, defined as:

ρ =
σ2

12

σ1σ2

A few limiting cases are worth examining. First, in the case where the measurement
is perfect, i.e. r = 0, the final uncertainty in the estimate of x2, P22(1), is zero.
Also, when ρ = 0, the final uncertainty in the estimate of x1 is equal to the initial
uncertainty: nothing can be learned from the measurement in this case. Finally, in
the case where ρ = ±1, the final uncertainty in the estimate of x1 is given by:

P11(1) = σ2
1(

1

1 + σ2
2/r2

)

and the amount of information gained (i.e. the reduction in P11(1)) depends on the
ration of the initial mean square error in the knowledge of x2 to the mean square
error in the measurement of x2. All these results are clearly very intuitive.

1.4. Es. 4. Consider the n−dimensional Brownian motion w(t):

(1) w(t) continuous a.s.
(2) w(0) = 0
(3) independent increments
(4) w(t) − w(s) ∈ N(0, t − s).

Suppose that we measure w(t) at the time steps: t = 1, 2, ... with a measurement
noise of variance σ2.

a: Determine the optimal estimator of w(t) and an equation for the steady
state predictor.

b: Consider the one dimensional case, and let σ = 1/2. Plot a realization of
the process, of the measurement and of the optimal estimation.

c: Vary σ and plot the Kalman gain together with the corresponding steady-
state Kalman gain.
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d: Consider the 2-dimensional case with

σ =

[

1 0
0 1/10

]

Plot a realization of the process, the measurement and the optimal estima-
tion.

a: First, we need a discrete model for the Brownian motion, and the measure-
ment:

x(t + 1) = x(t) + u(t)

y(t) = x(t) + σv(t),

where x(t) = w(t). Hence, we have a standard formulation of the estimation
problem with:

A = I B = I

C = I D = σ

Besides, we know that the initial condition is x0 = 0 and we have that:

Ex0x
T
0 = P0 = 0

The solution is given by:

K(t) = AP (t)CT (CP (t)CT + DDT )−1

= P (t)(P (t) + σ2I)−1

P (t + 1) = AP (t)AT − AP (t)CT (CP (t)CT + DDt)−1CP (t)AT + BBT

= P (t) − P (t)(P (t) + σ2I)−1P (t) + I

x̂(t + 1) = Ax̂(t) + K(t)(y(t) − Cx̂(t))

= x̂(t) + K(t)(y(t) − x̂(t))

The steady-state solution of the filter is obtained by imposing that P (t+
1) = P (t):

P (t + 1) = P (t) ⇒ P (t)2 = P (t) + σ2I

b: In the scalar case we can easily compute the steady state solution:

p2 − p − σ2 = 0 ⇒ p =
1

2
+

√

σ2 + 1/4

The steady-state Kalman gain becomes:

K =
p

p + σ2

In Fig. 1 the plot of a realization of the process, of the measurement, and
of the estimation is shown.

c: In Fig. 2, the time varying Kalman gain is plotted for different values of
σ.

d: In Fig. 3 the 2-dimensional case is shown.
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Figure 1. 1-dimensional Brownian motion, measurement and es-
timation with σ = 0.5
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Figure 2. Kalman gain K(t) for different values of σ
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Figure 3. 2-dimensional Brownian motion, measurement and estimation.


