
SYSTEMTEORI - KALMAN FILTER VS LQ CONTROL

1. Optimal regulator with noisy measurement

Consider the following system:

ẋ = Ax + Bu + w, x(0) = x0

where w(t) is white noise with Ew(t) = 0, and x0 is a stochastic variable with
Ex0x

T
0 = P0. Consider the following cost function:

J(u) = E

{
∫ t1

t0

[xT Qx + uT Ru]dt + xT (t1)Sx(t1)

}

where R > 0, Q ≥ 0 and S ≥ 0. The problem of determining for each t the input
u(t) as a function of the past such that the cost function is minimized is called the
stochastic state feedback regulator problem. Note that since all the variables are
stochastic, we consider the average of the usual cost function.

It is possible to prove that the solution of the stochastic state feedback
regulator problem is the same as in the deterministic case. The presence
of white noise does not alter the solution, except to increase the minimal value of
the cost function. That is, the optimal control input, u(t), is given by:

(1.1) u(t) = −R−1BT P (t)x(t)

where P (t) is the solution of the (RE):

Ṗ = −AT P − PA + PBR−1BT P − Q(1.2)

P (t1) = S(1.3)

Until now we have considered the unrealistic situation that we can somehow
measure the state vector x(t) in order to compute the optima control input u(t). A
more realistic situation is the case of output feedback, where we use the measured
variable y(t) to make an estimation x̂(t) of the state, see section 6.2 in the com-
pendium. Now, we want to formulate the optimal linear regulator problem when
the observation of the system are noisy. That is, consider the system:

ẋ(t) = Ax(t) + Bu(t) + w1(t), x(0) = x0

where x0 is a stochastic vector with zero mean and covariance P0. The observed
variable is given by:

y(t) = Cx(t) + Dw2(t)

where Ew2 = 0 and Ew(t)wT (s) = δ(t − s)I Then, the stochastic optimal out-
put feedback regulator problem is the problem of finding the functional u(t) =
f [y(τ), t0 ≤ τ ≤ t] such that the cost function:

J(u) = E

{
∫ t1

t0

[xT Qx + uT Ru]dt + xT (t1)Sx(t1)

}

is minimized.
1
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It is possible to prove that the solution of the stochastic optimal output
feedback regulator problem is the same as the solution of the corre-
sponding optimal state feedback regulator problem, eq. (1.1) and (1.2),
except that in the control law (1.1) the state x(t) is replaced with the
Kalman filter estimator x̂(t), that is the optimal control input is chosen as:

(1.4) u(t) = −R−1BT P (t)x̂(t)

where P (t) is the solution of the (RE):

Ṗ = −AT P − PA + PBR−1BT P − Q(1.5)

P (t1) = S(1.6)

The estimate x̂(t) is obtained as the solution of

˙̂x(t) = Ax̂(t) + Bu(t) + L(t)[y(t) − Cx̂(t)](1.7)

x̂(t0) = 0(1.8)

where

(1.9) L(t) = P (t)CT R−1

and P (t) is the solution of the (RE):

Ṗ = AP + PAT − PCT R−1CP + Q(1.10)

P (t0) = P0(1.11)

2. Examples

2.1. Es. 1 (from Tentamen 20 oktober 1998). Consider the following differ-
ential equation describing a simple electrical circuit:

L
d2i

dt2
+ R

di

dt
+

1

C
i =

dw

dt

where i is the current and w is a standard wiener process. Suppose we simplify it,
by setting R = 0. By substituting the appropriate numerical values we get:

d2i

dt2
+ i =

√
3v

where v is a normal distributed white noise with

Ev(t) = 0, Ev(t)v(s) = δ(t − s)

The measurement, s(t), are taken with an ampere meter where

s(t) = i(t) + e(t)

where e(t) is a normal distributed white noise, uncorrelated from the system noise
v(t), and such that:

Ee(t) = 0, Ee(t)e(s) = δ(t − s)

Your assignment is to determine a steady-state Kalman filter to estimate the
current, i(t), from the noisy observation, {s(τ), 0 ≤ τ ≤ t}, by using the associated
linear system.
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First, let us rewrite the problem in the standard form. Let x1 = i, and x2 =
di/dt. The, we have that:

ẋ1 = x2

ẋ2 = −x1 +
√

3v

that is:

ẋ =

[

0 1
−1 0

]

x +

[

0√
3

]

v = Ax + Bv

and

y(t) =
[

0 1
]

x(t) + e(t) = Cx(t) + De(t)

In section 9.2.3 of the compendium it is proven that the covariance matrix of
the estimation error, P (t), tends to a limit P as t → ∞. If (A,B) is completely
reachable, and (A,C) is completely observable, then P is the unique positive definite
symmetric solution of the (ARE):

AP + PA′ − PC ′(DD′)−1CP + BB′ = 0

and consequently the Kalman filter gain tends to

K = PC ′(DD′)−1

In our case the system is a minimal realization. In fact, we have that the reach-
ability and observability matrices are:

Γ =
[

B AB
]

=

[

0
√

3√
3 0

]

, Ω =

[

C
CA

]

=

[

0 1
−1 0

]

and they both are full rank.
In order to solve the (ARE) we define the matrix P as

P =

[

p1 p2

p2 p3

]

and we plug it in the (ARE):
[

0 1
−1 0

] [

p1 p2

p2 p3

]

+

[

p1 p2

p2 p3

] [

0 −1
1 0

]

−
[

p1 p2

p2 p3

] [

1 0
0 0

] [

p1 p2

p2 p3

]

+

[

0 0
0 3

]

= 0

So, we get the following system:






2p2 − p2
1 = 0

p3 − p1 − p1p2 = 0
−2p2 − p2

2 + 3 = 0

By solving the system, and taking the solution that gives a positive definite P we
get:

P =

[ √
2 1

1 2
√

2

]

Then, the steady state Kalman gain is:

K = PC ′R−1 =

[ √
2

1

]

Note that the estimator system matrix is:

A − KC =

[

−
√

2 1
−2 0

]
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which has the following eigenvalues:

χA−KC(λ) = (λ +

√

(2)

2
+ 2 − 1

2
) ⇒ λ1,2 = − 1√

2
± i

√
3√
2

that is, A − KC is a stability matrix.

2.2. Es. 2 (from Tentamen 1981). Consider the system:

ẋ = x + 2u

y = x + e

where x(0) ∈ N (0,
√

3), and e is a process of independent, normal distributed
increments, with Ee = 0, Ee2 = 2. We want to determine a control input û(t, x̂)
such that the cost function:

J(u) = E(

∫ T

t

2x2 + u2dt)

is minimized.

a: Determine the optimal feedback gain, K(t), and the optimal estimator
gain, L(t).

b: Suppose there is an additive, non-white noise with independent, normal
distributed increments and with correlation function e−|τ |. That is, the
process is described by:

ẋ = x + 2u + w, x(0) ∈ N (0,
√

3)

Let T = ∞, and determine the optimal steady-state gains K and L under
the assumption that e and w are independent.
Hint : Use the following equation for w(t):

dw(t) = −wdt + dv

where E(v) = 0 and E(v)2 = 2
c: Is the overall system stable?

a: By using the separation principle, we can first design an optimal feedback
gain, where we neglect the measurement noise. Then, we can design an
optimal estimator, where instead we take into account the noise.

The problem in the usual LQ framework becomes:

min
u

J(u) =

∫ T

t

(2x2 + u2)dt

subject to

ẋ = x + 2u

The optimal control input is û = Kx where:

K = −R−1BT P = −2P

and P is the solution of the (RE)

Ṗ = −AT P − PA + PBR−1BT P − Q

P (T ) = S
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that is

Ṗ = −2P + 4P 2 − 2

P (T ) = 0

In order to solve the previous nonlinear scalar differential equation, we
suppose that P (t) has the following form:

P (t) = k
ż(t)

z(t)

If we substitute it in the original differential equation we get that:

k
z̈

z
− k

ż2

z2
= −2k − ż

z
+ 4k2 ż2

z

2

− 2

⇒ k
z̈

z
+

ż2

z2
(−k − 4k2) + 2k

ż

z
+ 2

If we take k = −1/4 the expression simplifies and finally we get that:

z̈ + 2ż − 8z = 0 ⇒ z(t) = c1e
−4t + c2e

2t

⇒ P (t) = −1

4

−4c1e
−t + 2c2e

2t

c1e−4t + c2e2t
=

1

2

2e−6t − c

e−6t + c

By imposing P (T ) = 0, we finally get:

P (t) =
e−6(t−T ) − 1

e−6(t−T ) + 2
=

and hence, the optimal control input is:

u(t, x) = −2
e−6(t−T ) − 1

e−6(t−T ) + 2
x

Next, we have to find the optimal estimator (Kalman-Buchy filter). In
this case we do not consider the input u. We have that:

ẋ = x

y = x +
√

2v

where x(0) ∈ N (0,
√

3), and v(t) is white noise uncorrelated from x(0) and
with Ev(t)v(s) = δ(t − s). This is a standard problem with:

A = 1, B = 0, , C = 1, D =
√

2

Therefore, the optimal estimator is given by:

L(t) = P (t)CT R−1

with P (t) solution to the (RE):

Ṗ = AT P + PA − PCT R−1CP + Q

P (0) = P0

where

R = DDT , Q = BBT

By inserting the numerical values, we get:

L(t) = 2P (t), R = 2, , Q = 0, , P0 = 3
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and the (RE) becomes:

Ṗ = 2P − P 2/2

P (0) = 3

We can solve the differential equation by using the following substitution
P (t) = 1

z(t) :

⇒ ż + 2z − 1/2 = 0

z(0) = 1/3

which can be easily solved:

z(t) =
1

12
e−2t +

1

4
And so we have that the optimal gain is:

L(t) =
6

e−2t + 3

and the optimal estimator is:

dx̂

dt
= x̂ + 2u + L(t)(y − x̂)

x̂(0) = 0

b: We have that the overall system can be described by the following equa-
tions:

ẋ = x + w + 2u

ẇ = −w + v

y = x + e

with x0 and w0 independent processes such that:

Ex0 = Ew0 = 0, E

[

x0

w0

]

[

x0 w0

]

=

[

3 0
0 1

]

We introduce the new variable z = [xT , wT ]T and we determine the gains
K and L by using the separation principle, like before. First, we consider
the previous system without measurement noise, e(t), and we solve the
corresponding LQ problem. That is, we have the following linear system:

ż =

[

1 1
0 −1

]

z +

[

2
0

]

u

y =
[

1 0
]

z

and we want to minimize the cost function:

J(u) =

∫ ∞

0

(2y2 + u2)dt

To solve this LQ problem we have to check if the realization is minimal.
The reachability and observability matrices are:

Γ =
[

B AB
]

=

[

2 2
0 0

]

, Ω =

[

C
CA

]

=

[ √
2 0√
2

√
2

]

Unfortunately, the system is not completely reachable. Clearly, we can not
control the noise w(t)! However, since the system is asymptotically stable,



SYSTEMTEORI - KALMAN FILTER VS LQ CONTROL 7

the (ARE) has anyway a positive definite solution. So, the optimal solution,
û, is given by:

û = −Kz with K = BT P

and where the matrix P is the unique positive solution of the (ARE):

A′P + PA − PBB′P + Q = 0

where

Q =

[

2 0
00

]

By inserting the numerical values, we get:
[

1 0
1 −1

] [

p1 p2

p2 p3

]

+

[

p1 p2

p2 p3

] [

1 1
0 −1

]

−
[

p1 p2

p2 p3

] [

4 0
0 0

] [

p1 p2

p2 p3

]

+

[

2 0
0 0

]

= 0

So, we get the following system:






2p2
1 + 2 − 4p2

1 = 0
p2 + p1 − p2 − 4p1p2 = 0

2(p2 − p3) − 4p2
2 = 0

By solving the system, and taking the solution that gives a positive definite
P we get:

P =

[

1 1/4
1/4 1/8

]

> 0

and so, the optimal gain, K, is:

K =
[

2 0
]

[

1 1/4
1/4 1/8

]

=
[

2 1/2
]

Next, we have to determine the optimal observer, that is the Kalman-
Bucy filter. We have the following system:

ż =

[

1 1
0 −1

]

z +

[

0√
2

]

v

y =
[

1 0
]

z +
√

2η

Therefore, we have a standard problem with the following numerical data:

A =

[

1 1
0 −1

]

, B =

[

0√
2

]

, C =
[

1 0
]

, D =
√

2

R = DD′ = 2, Q = BB′ =

[

0 0
0 2

]

Note that in this case the realization is minimal. In fact, we have that the
reachability and observability matrices are:

Γ =
[

B AB
]

=

[

0
√

2√
2 −

√
2

]

, Ω =

[

C
CA

]

=

[

1 0
1 1

]

So, we know we have an unique positive solution to the (ARE). The steady-
state Kalman filter gain L is given by:

L = PCT R−1

and where the matrix P is the unique positive solution of the (ARE):

AP + PA′ − PC ′R−1CP + Q = 0
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By inserting the numerical values, we get:
[

1 1
0 −1

] [

p1 p2

p2 p3

]

+

[

p1 p2

p2 p3

] [

1 0
1 −1

]

−
[

p1 p2

p2 p3

] [

1/2 0
0 0

] [

p1 p2

p2 p3

]

+

[

0 0
0 2

]

= 0

with solution (we obtained it numerically)

P =

[

4.3947 0.4337
0.4337 0.9530

]

and the Kalman gain becomes

K = PCT R−1 =
[

2.1974 0.2168
]

c: The overall system is stable according to the theory studied in chapter 8
and 9 of the compendium. However, we can check it by computing the
eigenvalues of the matrix:

[

A + BK −BK
0 A − LC

]

That is, the eigenvalues of A + BK and of A − LC:

χA+BK(λ) = (λ + 3)(λ + 1) ⇒ λ1,2 = −3,−1

χA−LC(λ) = (λ + 1)2 + 1 ⇒ λ1,2 = −1,−1.1974 − 1

and so the overall system is asymptotically stable.


