
Solution to Exam October 24, 2008 in SF2832 Mathematical Systems Theory.

Disclaimer: We reserve the right to correct typos in the document.

Allowed books: Anders Lindquist & Janne Sand, An Introduction to Mathematical
Systems Theory, class notes and β mathematics handbook.
Solution methods: All conclusions should be carefully motivated.
Note! Your personal number must be stated on the cover sheet. Number your pages and
write your name on each sheet that you turn in!
You need 45 points credit (including your bonus) to pass the exam.

1. Determine if each of the following statements is true or false. You must justify your
answers.

(a) Consider ẋ = Ax and assume AT = −A. True or False: x(t) always moves in a
circle as long as x(0) 6= 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5p)
Answer: true, since xT (t)x(t) = xT (0)x(0).

(b) True or False: Given a minimal realization (A,B,C), (A + BLC,B,C) is also
minimal with any L. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5p)
Answer: true, since controllabity does not change with feedback con-
trol and observability does not change with output feedback.

(c) Consider ẋ = Ax. Assume the equation Ax = 0 has more than one solution.
True or False:
(i) The system may be asymptotically stable. . . . . . . . . . . . . . . . . . . . . . . . . . . . (3p)

Answer: false.
(ii) There exists an initial condition x0 6= 0 and a finite T ≥ 0, such that

eAtx0 = 0, ∀t ≥ T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2p)
Answer: false since deteAt 6= 0.

(d) Consider a controllable and observable system

ẋ = Ax+ bu,

y = Cx,

where x ∈ Rn, u ∈ R and y ∈ Rp, and p < n. True or False: arbitrary pole
assignment is never possible with output feedback u = Ly. . . . . . . . . . . . . . . (5p)
Answer: true, since we only have at most p < n parameters to tune
the eigenvalues.

2. Consider :

ẋ =
(
−(1 + a) −a

1 0

)
x+
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1
0

)
u

y =
(

0 1
)
x.
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(a) Is the system minimal? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (6p)
Answer: yes.

(b) Determine the state transition matrix eAt of the system. . . . . . . . . . . . . . . . . (8p)
Answer: straight forward calculation.

(c) Discuss when the system is BIBO stable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (6p)
Answer: Since the system is minimal, we need A to be a stable matrix,
which implies a > 0.

3. Consider the linearized system of attitude control for a spacecraft:φ̇

θ̇

ψ̇

 =

1 0 0
0 1 0
0 0 1

 ω1

ω2

ω3


ω̇1

ω̇2

ω̇3

 =
m∑

i=1

biui,

where φ, θ, ψ describe the angular position of the spacecraft, and ωi are angular
velocities. Each control ui is implemented by an opposing pair of gas jets. bi depends
on where the gas jets are placed.

(a) At least how many controls are needed in order to make the system controllable?
(6p)
Answer: three.

(b) At least how many measurements are needed in order to make the system
observable? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (6p)
Answer: three.

(c) Design a set of bi such that the system is controllable and design a state
feedback control so that the poles of the closed-loop system are placed at
{−1,−1,−1,−1,−1,−1}. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (8p)
Answer: we can take {b1, b2, b3} = I3. Then the system consists of three
subsystems of the following type: ẋ1 = x2, ẋ2 = u. u = −x1 − 2x2 will
assign the eigenvalues to {−1,−1}.

4. Consider the optimal control problem for a controllable and observable system

min
u
J =

∫ ∞

0
(xTQx+ u2)dt s.t. ẋ = Ax+Bu, x ∈ Rn, u ∈ Rm, x(0) = x0.

Suppose P ∗ is the positive definite solution for the associated algebraic Riccati equa-
tion.

(a) Show the following linear matrix inequality (LMI) holds:[
ATP ∗ + P ∗A+Q P ∗B

BTP ∗ I

]
≥ 0.
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (8p)
Answer: we need to show for any z = (xT , uT )T , zTF (P ∗)z ≥ 0. The left
hand side is equal to ‖(BTP ∗x+ u)‖2

(b) Define

F (P ) =
[
ATP + PA+Q PB

BTP I

]
,

show for any real symmetric matrix P,

rankF (P ) = m+ rank(ATP + PA+Q− PBBTP )

(which implies that P ∗ minimizes the rank of F (P ).) . . . . . . . . . . . . . . . . . . . . (5p)

Proof: Since F (P )z = 0 is equivalent to
[
ATP + PA+Q− PBBTP 0

BTP I

]
z =

0.

(c) Now let A = a > 0, B = 1, Q = q, compute the optimal control u = kx. (5p)
Answer: straight forward.

(d) What is the closed-loop pole as q → 0? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2p)
Answer: −a.

5. Let z be the outcome of a random variable with distribution N(0, α2) (i.e., E{z} =
0, E{z2} = α2). We would like to determine the value of z by a set of noisy mea-
surements

y(t) = z + w(t) for t = 0, 1, . . . , n− 1

where w(t) ∈ N(0, σ2) are independent of each other and of z.

a) Determine P (n) = E{(z− ẑn)2} as a function of α, σ, n, where ẑn is the optimal
estimate of z based on measurements up to time instant n− 1.
(Hint: note that f(k + 1)−1 = f(k)−1 + δ ⇒ f(k) = 1

f(0)−1+kδ
.) (8p)

b) Find ẑn of z in terms of y(0), y(1), . . . , y(n− 1). (6p)

c) What is ẑ3 if y(0) = 1, y(1) = 0.5, y(2) = 1, α = σ = 2? (3p)

d) For what values of α, σ does the best estimate ẑn equal the arithmetic mean
1
n

∑n−1
t=0 y(t)? (3p)

Solution: One way to solve this is to use the Kalman filter for the system described
above with z = z(t) for t = 0, . . .

z(t+ 1) = z(t)
y(t) = z(t) + σv(t),

where v(t) is normalized white noise, and initially P (0) = E(z(0)2) = α2. Namely,
A = 1, B = 0, C = 1, D = σ. Then the Kalman filter is given by

x̂(t+ 1) = x̂(t) +K(t)(y(t)− x̂(t)) = x̂(t)(1−K(t)) +K(t)y(t),
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where K(t) = P (t)
P (t)+σ2 . The update equation for P (t) is

P (t+ 1) = P (t)− P (t)2

P (t) + σ2
=

1
P (t)−1 + σ−2

.

Solving the recursion, using that P (0) = α2, we get

P (t) =
1

α−2 + tσ−2
,

which equals P (t) = E{(ẑn − z)2}, and answers a. The Kalman gain is then

K(t) =
1

1 + t+ α−2σ2
.

We see that

ẑ(1) = K(0)y(0)
ẑ(2) = (1−K(1))K(0)y(0) +K(1)y(1) = (y(0) + y(1))K(1)
ẑ(3) = (1−K(2))K(1)(y(0) + y(1)) +K(2)y(2) = (y(0) + y(1) + y(2))K(2)

and so on, by noting that K(n) = (1−K(n))K(n− 1). I.e.,

ẑ(n) = K(n− 1)
n−1∑
t=0

y(t).

This answers b). In c) we get by plugging in the values

ẑ(3) =
1 + 0.5 + 1

4
= 0.625.

To answer d), K(n− 1) = 1
n whenever α−2σ2 = 0. I.e., when σ = 0 or α = ∞.


