Theory Project 2: System Interconnection Mathematical Systems Theory, SF2832 Fall 2007

Satisfactory completion of this project gives three (3) bonus credits for this year's final exam. The examination of the project is oral and written. Firstly the results should be presented in a written report (use a word processor) and secondly each student should be prepared to answer question about the report when it is handed back. Hand in the report at the latest October 10, 5:00pm. Cooperation in groups of no more than two students is allowed. Only one report for each group is required.

For some problems you will use "Control System Toolbox" in MATLAB. Names written with bold font are command names in MATLAB.
Write help control to get a list of available functions in the "Control System Toolbox" or use the help browser.

Low order realizations are for computational efficiency reasons important when implementing systems in software. In particular, for a specific system a minimal realization is desired, i.e. a realization that is both reachable and observable. When interconnecting minimal systems, the interconnected system is not always minimal. This is what we will study in this project.

System Interconnection

1. The system

$$
\begin{aligned}
\dot{x}(t) & =A x(t)+B u(t) \\
y(t) & =C x(t)+D u(t)
\end{aligned}
$$

has the transfer function $G(s)=C(I s-A)^{-1} B+D$ which is sometimes denoted by

$$
\left(\begin{array}{c|c}
A & B \\
\hline C & D
\end{array}\right):=C(I s-A)^{-1} B+D .
$$

In this part we are going to study interconnections between such systems.

Serial connection

First we will study the serial connection given in Figure 1. With a slight abuse of notation we shall call the two systems G_{1} and G_{2}. The system G_{1} is given by

$$
\begin{align*}
\dot{x}_{1}(t) & =A_{1} x_{1}(t)+B_{1} u_{1}(t) \tag{1}\\
u_{2}(t) & =C_{1} x_{1}(t)+D_{1} u_{1}(t) \tag{2}
\end{align*}
$$

and the system G_{2} is given by

$$
\begin{align*}
\dot{x}_{2}(t) & =A_{2} x_{2}(t)+B_{2} u_{2}(t) \tag{3}\\
y(t) & =C_{2} x_{2}(t)+D_{2} u_{2}(t) . \tag{4}
\end{align*}
$$

Figur 1: Serial interconnected system

Figur 2: Feedback system

The transfer functions of the systems are

$$
G_{i}(s)=\left(\begin{array}{c|c}
A_{i} & B_{i} \\
\hline C_{i} & D_{i}
\end{array}\right) \text { for } i=1,2
$$

By substituting (2) into (3) and (4) we get

$$
\begin{aligned}
\dot{x}_{1}(t) & =A_{1} x_{1}(t)+B_{1} u_{1}(t) \\
\dot{x}_{2}(t) & =B_{2} C_{1} x_{1}(t)+A_{2} x_{2}(t)+B_{2} D_{1} u_{1}(t) \\
y(t) & =D_{2} C_{1} x_{1}(t)+C_{2} x_{2}(t)+D_{2} D_{1} u_{1}(t)
\end{aligned}
$$

and hence the transfer function of the interconnected system is

$$
\left(\begin{array}{cc|c}
A_{1} & 0 & B_{1} \\
B_{2} C_{1} & A_{2} & B_{2} D_{1} \\
\hline D_{2} C_{1} & C_{2} & D_{2} D_{1}
\end{array}\right) .
$$

For the feedback system, given in Figure 2, let the system G_{1} be given by

$$
\begin{align*}
\dot{x}_{1}(t) & =A_{1} x_{1}(t)+B_{1} u(t) \tag{5}\\
y(t) & =C_{1} x_{1}(t)
\end{align*}
$$

Figur 3: Parallel interconnected system
and let the system G_{2} be given by

$$
\begin{aligned}
\dot{x}_{2}(t) & =A_{2} x_{2}(t)+B_{2} y(t) \\
v(t) & =C_{2} x_{2}(t)+D_{2} y(t) .
\end{aligned}
$$

From Figure $2 u(t)=r(t)+v(t)$. For simplicity we have assumed that $D_{1}=0$.
(a) Find the transfer function from $r(t)$ to $y(t)$?
(b) Find the transfer function for the parallel system in figure 3, when

$$
G_{i}(s)=\left(\begin{array}{l|l}
A_{i} & B_{i} \\
\hline C_{i} & D_{i}
\end{array}\right) \text { for } i=1,2 ?
$$

Reachability

2. A system

$$
\dot{x}(t)=A x(t)+B u(t)
$$

is reachable if for any given time t_{0}, initial condition $x\left(t_{0}\right)=x_{0}$ and final condition x_{1}, it is possible to find a bounded control $u(t)$ and a time t_{1} such that $x\left(t_{1}\right)=x_{1}$. This is an important concept and there are many different ways to characterize this. The following are equivalent:
(i) The pair (A, B) is reachable,
(ii) The matrix $\left[B A B \ldots A^{n-1} B\right]$ is full rank,
(iii) The reachability gramian

$$
W\left(t_{0}, t_{1}\right)=\int_{t_{0}}^{t_{1}} e^{A t} B B^{T} e^{A^{T} t} d t
$$

is strictly positive definite for all $t_{0}<t_{1}$,
(iv) If $v^{T} A=\lambda v^{T}$ and $v \neq 0$, then $v^{T} B \neq 0$.
(v) The matrix $[\lambda I-A B]$ is full rank for all $\lambda \in \mathbb{C}$.

In the course we have shown that the properties $(i),(i i)$ and (iii) are equivalent. Here we will prove that $(i v)$ and (v) are equivalent with $(i i)$.
(a) First we will show that $(i i) \Rightarrow(i v)$. For this, we use a proof by contradiction. Assume that $(i v)$ is not true, i.e. that there exist a vector $v \neq 0$ such that $v^{T} A=\lambda v^{T}$ and $v^{T} B=0$. Show that then $v^{T}\left[B A B \ldots A^{n-1} B\right]=0$ and hence (ii) does not hold.
(b) To show that $(i v) \Rightarrow(i i)$, we again use proof by contradiction. Assume that the system is not reachable and put it into the form anologous to the kalman decomposition, i.e.

$$
A=\left(\begin{array}{cc}
A_{c} & A_{c \bar{c}} \\
0 & A_{\bar{c}}
\end{array}\right), \quad B=\binom{B_{c}}{0} .
$$

Show that $(i v) \Rightarrow(i i)$.
(c) Show that (iv) and (v) are equivalent.

Feel free to use an other line of proof if you find it easier, as long as you only refer to results proved in the course.

Reachability and Minimality of Interconnected Systems

3. (a) Show that the systems

$$
\begin{aligned}
\dot{x}_{1}(t) & =-2 x_{1}(t)+u_{1}(t) \\
u_{2}(t) & =-x_{1}(t)+u_{1}(t)
\end{aligned}
$$

and

$$
\begin{aligned}
\dot{x}_{2}(t) & =-3 x_{2}(t)-u_{2}(t) \\
y(t) & =x_{2}(t)+u_{2}(t)
\end{aligned}
$$

are minimal, but the serial connection of them is not.
(b) Find two minimal systems G_{1} and G_{2} such that the state space representation of the feedback system in Figure 2 is not minimal.
(c) Show that if the system G_{1} given by (5) is minimal. Then the feedback system with state feedback (i.e. $A_{2}=0, B_{2}=0$, and $C_{2}=0$) is minimal.
(d) Is a parallel connection of two minimal systems always minimal?

Matlab part

4. The mat-file P_PHB.mat contains the two systems G1 and G2, see http://www.math.kth.se/optsyst/grundutbildning/kurser/SF2832/kursPM.html.
Consider serial connection, feedback connection, and parallel connection. Use matlab to do the following:
(a) Find out if the interconnection is minimal.
(b) If it is not, find a minimal state space realization of it.

A matlab command that might be handy is "minreal". Note that multiplication and addition is defined for systems.

From these four excercises, it is clear that in some cases the interconnected systems give a minimial realization, but in other cases it does not. When one has obtained a nonminimal system one has to be carefull and consider why it is not minimal. Is it due to lack of reachability or lack of observability? Are the unreachable/unobservable modes stable or unstable? Do the states represent actual physical properties of the system? This will be considered later in the course.
Good Luck! Don't hesitate to ask (by email or phone) if anything is unclear.

