Exam in SF2832 Mathematical Systems Theory October 24, 2007
 Answers and solution sketches

1. (a) We have

$$
\Gamma=\left[\begin{array}{ll}
1 & -4 \\
1 & -4
\end{array}\right]
$$

which does not have full rank. The system is therefore not completely reachable.
(b) Note that

$$
\left(\begin{array}{cc}
-1 & -3 \\
-3 & -1
\end{array}\right)=T\left(\begin{array}{cc}
-4 & 0 \\
0 & 2
\end{array}\right) T^{-1}, \text { where } T=\left(\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right),
$$

hence

$$
\begin{aligned}
\Phi(t, s) & =T\left(\begin{array}{cc}
e^{-4(t-s)} & 0 \\
0 & e^{2(t-s)}
\end{array}\right) T^{-1} \\
& =\frac{1}{2}\left(\begin{array}{cc}
e^{-4(t-s)}+e^{2(t-s)} & e^{-4(t-s)}-e^{2(t-s)} \\
e^{-4(t-s)}-e^{2(t-s)} & e^{-4(t-s)}+e^{2(t-s)}
\end{array}\right) .
\end{aligned}
$$

(c)

$$
\begin{aligned}
x(t) & =\Phi(t, 0) x(0)+\int_{0}^{t} \Phi(t, s) B u(s) d s \\
& =\left(\begin{array}{cc}
e^{-4 t}+e^{2 t} & e^{-4 t}-e^{2 t} \\
e^{-4 t}-e^{2 t} & e^{-4 t}+e^{2 t}
\end{array}\right) \frac{x(0)}{2}+\binom{1}{1} \frac{1}{4}\left(1-e^{-4 t}\right)
\end{aligned}
$$

which goes to $\frac{1}{4}\binom{1}{1}$ if $x(0)=0$.
(d) From above we have that $|x(t)| \rightarrow \infty$ if $x(0)=\binom{1}{0}$.
(e) No, it is not possible. This follows since $x(0)$ does not belong to the reachable subspace and sinse the unreachable subspace is unstable. A direct way to see this is by considering the formula in (c) then

$$
x(t)=\left[\begin{array}{l}
e^{-4 t}+2 e^{t} \\
e^{-4 t}-2 e^{t}
\end{array}\right] \frac{1}{2}+\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right\} \rightarrow\left[\begin{array}{c}
1 \\
-1
\end{array}\right] e^{2 t}+\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right\}, \quad t \rightarrow \infty
$$

2. (a) The numerical values lead to the following equations

$$
\begin{aligned}
& \ddot{\theta}_{1}=-\left(\theta_{1}-\theta_{2}\right)-2 \theta_{1}-5 u \\
& \ddot{\theta}_{2}=-\left(\theta_{2}-\theta_{1}\right)-2 \theta_{2}+5 u
\end{aligned}
$$

The state space realization is therefore

$$
\dot{x}=\left[\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-3 & 1 & 0 & 0 \\
1 & -3 & 0 & 0
\end{array}\right] x+\left[\begin{array}{c}
0 \\
0 \\
-5 \\
5
\end{array}\right] u=\left[\begin{array}{cc}
0 & I \\
\bar{A} & 0
\end{array}\right] x+\left[\begin{array}{c}
0 \\
\bar{B}
\end{array}\right] u
$$

where

$$
\bar{A}=\left[\begin{array}{cc}
-3 & 1 \\
1 & -3
\end{array}\right], \quad B=\left[\begin{array}{c}
-5 \\
5
\end{array}\right]
$$

and I denotes the 2×2 identity matrix.
(b) The controllability matrix has the form

$$
\Gamma=\left[\begin{array}{cccc}
0 & \bar{B} & 0 & \bar{A} \bar{B} \\
\bar{B} & 0 & \bar{A} \bar{B} & 0
\end{array}\right]=\left[\begin{array}{cccc}
0 & -5 & 0 & 20 \\
0 & 5 & 0 & -20 \\
-5 & 0 & 20 & 0 \\
5 & 0 & -20 & 0
\end{array}\right]
$$

which is of rank 2 . The system is thus not controllable. The reachable subspace has dimension 2.
(c) We have $C=\left[\begin{array}{lll}\tilde{C} & 0 & 0\end{array}\right]$ where $\bar{C}=\left[\begin{array}{ll}1 & 0\end{array}\right]$. We get the observability matrix

$$
\Omega=\left[\begin{array}{cc}
\bar{C} & 0 \\
0 & \bar{C} \\
\bar{C} \bar{A} & 0 \\
0 & \bar{C} \bar{A}
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-3 & 1 & 0 & 0 \\
0 & 0 & -3 & 1
\end{array}\right]
$$

which has rank 4 . The system is completely observable.
(d) According to the system dynamics governing $\theta_{1}+\theta_{2}$ and $\theta_{1}-\theta_{2}$ we get

$$
\begin{aligned}
& \ddot{\theta}_{1}+\ddot{\theta}_{2}=-2\left(\theta_{1}+\theta_{2}\right) \\
& \ddot{\theta}_{1}-\ddot{\theta}_{2}=-4\left(\theta_{1}+\theta_{2}\right)-10 u
\end{aligned}
$$

This gives the state space model

$$
\dot{z}=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
-2 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & -4 & 0
\end{array}\right] z+\left[\begin{array}{c}
0 \\
0 \\
0 \\
-10
\end{array}\right] u:=\left[\begin{array}{cc}
\bar{A}_{1} & 0 \\
0 & \bar{A}_{2}
\end{array}\right] z+\left[\begin{array}{c}
0 \\
\bar{B}_{2}
\end{array}\right] u
$$

We may now introduce the notation

$$
z_{\bar{r}}=\left[\begin{array}{l}
z_{1} \\
z_{2}
\end{array}\right], \quad z_{r}=\left[\begin{array}{l}
z_{3} \\
z_{4}
\end{array}\right]
$$

which satisfy

$$
\dot{z}_{\bar{r}}=\bar{A}_{1} z_{\bar{r}}, \quad \dot{z}_{r}=\bar{A}_{2} z_{r}+\bar{B}_{2} u
$$

Clearly, $z_{\bar{r}}$ is not reachable while z_{r} is reachable since

$$
\bar{\Gamma}=\left[\begin{array}{ll}
\bar{B}_{2} & \bar{A}_{2} \bar{B}_{2}
\end{array}\right]=\left[\begin{array}{cc}
0 & -10 \\
-10 & 0
\end{array}\right]
$$

which has full rank.
3. (a) We use that

$$
J[0]=x_{0}^{T} \int_{0}^{\infty} e^{A^{T} t} Q e^{A t} d t x_{0}=x_{0}^{T} P x_{0}
$$

where P is the solution to the Lyapunov equation

$$
A^{T} P+P A+Q=0
$$

We get the solution

$$
P=\left[\begin{array}{ll}
5 / 4 & 1 / 2 \\
1 / 2 & 1 / 4
\end{array}\right]
$$

and hence $J[0]=1 / 4$.
(b) We have $\min _{u \in \mathcal{U}} J[u]=x_{0}^{T} P x_{0}$, where P is the positive definite solution to the ARE

$$
A^{T} P+P A+Q-P B B^{T} P=0
$$

Note that (A, B) is completely reachable and that $Q=C^{T} C$ with $C=\left[\begin{array}{cc}1 & 0\end{array}\right]$ and (A, C) is completely observable. Hence the ARE has a unique positive definite solution.
We get

$$
P=\left[\begin{array}{cc}
-2+2 \sqrt{1+\sqrt{2}} & -1+\sqrt{2} \\
-1+\sqrt{2} & -2+\sqrt{2+2 \sqrt{2}}
\end{array}\right]
$$

and hence $\min _{u \in \mathcal{U}} J[u]=-2+\sqrt{2+2 \sqrt{2}}$.
4. (a) False. We have

$$
H_{2}=\left[\begin{array}{ll}
R_{1} & R_{2} \\
R_{2} & R_{3}
\end{array}\right]=\left[\begin{array}{cc}
-1 & 1 \\
1 & -1
\end{array}\right]
$$

which has rank 1 . The McMillan degree is therefore 1.
(b) False. The last state is not controllable (reachable).
(c) (i) True: The linearity follows since

$$
\begin{aligned}
y(t) & =\int_{-\infty}^{\infty} h(t-s)\left(\alpha_{1} u_{1}(s-T)+\alpha_{2} u_{2}(t-s-T)\right) d s \\
& =\alpha_{1} \int_{-\infty}^{\infty} h(t-s) u_{1}(s-T) d s+\alpha_{2} \int_{-\infty}^{\infty} h(t-s) u_{2}(s-T) d s \\
& =\alpha_{1} y_{1}(t)+\alpha_{2} y_{2}(t)
\end{aligned}
$$

(ii) True. The time-invariance follows since if $u_{\tau}(t)=u(t+\tau)$ then

$$
\begin{aligned}
y_{\tau}(t) & =\int_{-\infty}^{\infty} h(t-s) u_{\tau}(s) d s=\int_{-\infty}^{\infty} h(t-s) u(s+\tau-T) d s \\
& =\int_{-\infty}^{\infty} h(t+\tau-s) u(s-T) d s=y(t+\tau)
\end{aligned}
$$

(iii) False. This follows since $h(t) \neq 0$, which implies that $y(t)$ depends on $u(s)$, $s \in(-\infty, \infty)$.
(c) True. The statement follows since

$$
\Omega v=\left[\begin{array}{c}
C \\
C(A+B K C) \\
\vdots \\
C(A+B K C)^{n-1}
\end{array}\right] v=\left[\begin{array}{c}
C v \\
\lambda C v \\
\vdots \\
\lambda^{n-1} C v
\end{array}\right]=0
$$

where λ is the eigenvalue satisfying $A v=\lambda v$.
5. (a) We make a series expansion using the Markov parameters

$$
\begin{aligned}
G(s) & =\frac{b_{m} s^{m}+b_{m-1} s^{m-1}+\ldots+b_{0}}{s^{n}+a_{1} s^{n-1}+\ldots+a_{n}} \\
& =\frac{1}{s^{n-m}} \frac{b_{m} s^{n}+b_{m-1} s^{n-1}+\ldots+b_{0} s^{n-m}}{s^{n}+a_{1} s^{n-1}+\ldots+a_{n}} \\
& =\frac{1}{s^{n-m}}\left(b_{m}+\frac{\bar{b}(s)}{s^{n}+a_{1} s^{n-1}+\ldots+a_{n}}\right) \\
& =\frac{1}{s^{n-m}} R_{n-m}+\frac{1}{s^{n-m+1}} R_{n-m-1}+\ldots
\end{aligned}
$$

where $R_{n-m}=b_{m}$ and

$$
\bar{b}(s)=\left(b_{m-1}-b_{m} a_{1}\right) s^{n-1}+\ldots+\left(b_{0}-b_{m} a_{m}\right) s^{n-m}+a_{m-1} s^{n-m-1}+\ldots+a_{n}
$$

We can conclude that

$$
\begin{aligned}
R_{k} & =C A^{k-1} B=0, \quad k=1, \ldots, n-m \\
R_{n-m} & =C A^{n-m-1} B \neq 0
\end{aligned}
$$

This proves the result since $d=n-m$.
(b) The stationary state solution satisfies $\frac{d}{d t} x(t)=s e^{s t} \bar{x}$ and hence the state space system has the solution

$$
\begin{aligned}
s e^{s t} \bar{x} & =A e^{s t} \bar{x}+B e^{s t} \bar{u} \\
\bar{y} e^{s t} & =C e^{s t} \bar{x}
\end{aligned}
$$

If $s=z$, where z is a zero of the transfer function then $\bar{y}=0$. This gives the equation system

$$
\left[\begin{array}{cc}
-s I+A & B \\
C & 0
\end{array}\right]\left[\begin{array}{l}
\bar{x} \\
\bar{u}
\end{array}\right]=0
$$

which since $\bar{u} \neq 0$ implies that the matrix has rank less than $n+1$.
(c) We have $C B \neq 0$ so $d=1$. The matrix

$$
\left[\begin{array}{cc}
-2 I+A & B \\
C & 0
\end{array}\right]=\left[\begin{array}{ccc}
-2 & 1 & 0 \\
-1 & -4 & 1 \\
-2 & 1 & 0
\end{array}\right]
$$

has rank 2 , which proves that $z=2$ is a zero.

