
Solution to Exam in SF2832 Mathematical Systems Theory, March 2013.

Examiner: Xiaoming Hu, tel. 790 7180.

Allowed material: Anders Lindquist & Janne Sand, An Introduction to Mathematical
Systems Theory, your own class notes, and β mathematics handbook.

Solution methods: All conclusions should be carefully motivated.

Note! Your personal number must be stated on the cover sheet. Number your pages and
write your name on each sheet that you turn in!

You need 45 points credit (including your still valid bonus) to pass the exam. The other
grade limits are listed on the course home page.

Read this before you start: 1. The problems are NOT necessarily ordered in terms of
difficulty. 2. Problem 4(c) requires some calculation no matter which method you take.

1. Determine if each of the following statements is true or false. You must justify your
answers. All matrices involved are assumed to be constant matrices unless
otherwise specified.

(a) Consider an n-dimensional time-varying system ẋ = A(t)x, where A(t) is con-
tinuous. Then ‖x(t)‖2 = ‖x(t0)‖2 ∀t ≥ t0 as long as AT (t) = −A(t) ∀t ∈ R.
(5p)

Answer: True, since d
dt‖x(t)‖

2 = 0.

(b) Consider an unobservable system ẋ = Ax, y = Cx, where x ∈ Rn. Given
two distinct points xi /∈ ker Ω (the unobservable subspace) i = 1, 2, then
CeAtx1 − CeAtx2 can not be identically zero for all t > 0. . . . . . . . . . . . . . . . (5p)

Answer: False. We can let x2 = x1 + x0, where x0 ∈ ker Ω.

(c) Consider ẋ = Ax+bu, where x ∈ Rn, u ∈ R. A necessary condition for arbitrary
assignment of eigenvalues of A+ bk is that rank A ≥ n− 1. . . . . . . . . . . . . . (5p)

Answer: True. Arbitrary pole assignment is possible iff (A, b) is controllable.
If (A, b) is controllable, we can rewrite the system after linear transformation
into the standard controllable form where Ā has rank at least n− 1.

(d) Consider the optimal control problem for ẋ = Ax + Bu: minu xT (t1)Sx(t1) +∫ t1
t0
(xTQx + uTRu)dt, where S ≥ 0, Q ≥ 0 and R > 0. Then P (t) is positive

definite for t0 ≤ t < t1 if and only if S is positive definite, where P (t) is the
solution to the corresponding dynamical Riccati equation. . . . . . . . . . . . . . . . (5p)

Answer: False. For example, P (t) is positive definite on [t0, t1) even for S = 0
if Q > 0 (Let A = 0, B = 0 for example).
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2. Consider :

ẋ = Ax+ bu

y = cx,

where

A =

[
0 a1
a2 0

]
, b =

[
1
1

]
, c =

[
1 1

]
, a1 6= a2, a1a2 > 0

(a) Find the state transition matrix eAt. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5p)

Answer: eAt =

(
e1(t) ke2(t)

k−1e2(t) e(t)

)
, where e1(t) =

1
2(exp(

√
a1a2t)+exp(−√

a1a2t)), e2(t) =

1
2(exp(

√
a1a2t)− exp(−√

a1a2t)), k =
√
a1√
a2
.

(b) Design a feedback control u = kx such that the closed-loop poles are {−1,−2}.
(5p)

Answer: k1 = −3− k2, k2 =
2−3a1+a1a2

a1−a2
.

(c) Find an open-loop control u(t) (i.e. u(t) should be a function of time and the
initial states) in any way you can, such that whenever cx(0) = 0, y(t) = 0 for
all t ≥ 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (6p)

Answer: u = a1−a2
2 exp(−1

2(a1 + a2)t)x0, where x1(0) = −x2(0) = x0.

(d) What happens to x(t) as t → ∞ when the control designed in (c) is applied?
(4p)

Answer: x(t) → 0 if a1 + a2 > 0.

3. Consider the transfer matrix

R(s) =

[
γ
s

β
s+1

1
s

1
s+1

]
,

where β, γ are nonzero constants.

(a) Find the standard reachable realization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (7p)

Answer: omitted.

(b) Can the realization in (a) also be observable and why? . . . . . . . . . . . . . . . . . . (6p)

Answer: No, since the McMillan degree is 2.

(c) For the case β = γ, find a minimal realization of R(s). . . . . . . . . . . . . . . . . . . . (7p)

Answer: When β = γ, y1 = γy2. So we just need to find a minimal realization
for r2(s) = [1s

1
s+1 ]. The standard observable realization gives

ẋ =

[
0 1
0 −1

]
x+

[
1 1
0 −1

]
u

y2 =
[
1 0

]
x.

One can easily see that it is also controllable. Adding in y1 = [γ 0]x we have
the minimal realization.
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4. Consider the optimal control problem

min
u

∫ ∞

0
(y2 + u2)dt

subject to

ẋ = Ax+ bu

y = cx

where,

A =

[
−1 0
0 0

]
, b =

[
1
−1

]
, c =

[
1 1

]
.

(a) Show that the optimal control exists. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(5p)

Proof: the optimal control exists since the system is both controllable and
observable.

(b) Some times the algebraic Riccati equation (ARE) is easier to solve if we do a
coordinate change first. Show that if we let x̄ = Sx, then in the new coordinate
system, P̄ = S−TPS−1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5p)

Proof: Replacing A by S−1ĀS, b by S−1b̄ and c by c̄S in the ARE, we obtain
the conclusion.

(c) Find a coordinate change and solve the ARE associated with the above optimal
control problem in the new coordinates, i.e., find P̄ (Hint: Completion of square
might be useful for solving the ARE).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(10p)

Answer:

Let x̄1 = x1 + x2, x̄2 = x2, and P̄ =

[
p1 p2
p2 p3

]
, we have

−2p1 − p22 + 1 = 0, 2p1 − 2p2 − 2p2p3 = 0, 2p2 − p23 = 0.

Using eqns (1) and (3), the second equation becomes p23 + p22 + 2p2p3 − 1 = 0,
i.e. (p2 + p3)

2 = 1, which gives p2 = ±1 − p3. Since p3 > 0, using eqn. (3) we
see that p2 = 1− p3. Then, p3 = −1 +

√
3, p2 = 2−

√
3, p1 = 2

√
3− 3.

5. (a) Consider a controllable and observable SISO system:

ẋ = Ax+ bu

y = cx.

Let g(s) = c(sI − A)−1b =
sq+p1sq−1+···+pq
sn+d1sn−1+···+dn

be the transfer function. Now we
want to use feedback control u = kx to make the system unobservable “as much
as possible”. Let Ωk denote the observability matrix for (c, A+ bk). Show

max
k

dim ker(Ωk) = q,

where “dim” denotes dimension and “ker” denotes kernel. . . . . . . . . . . . . . . (10p)
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Answer: It is zero/pole cancellation that induces unobservability. Since the
system is controllable, we can find u = k∗x to assign poles such that all zeros
are canceled. Now let u = k∗x+ v, then

ẋ = (A+ bk∗)x+ bv (1)

y = cx.

A minimal realization of (1) clearly has dimension n− q (the transfer function
after zero/pole cancellation). By Kalman decomposition we see that ker Ω for
(1) has dimension q.

(b) Let x be the outcome of a random variable with distribution N(0, α2) (i.e.,
E{x} = 0, E{x2} = α2). We would like to estimate the value of x by a set of
noisy measurements

y(t) = x+ w(t) for t = 0, 1, . . . , n− 1

where w(t) ∈ N(0, σ2(t)) are independent of each other and of x. Determine
P (n) = E{(x − x̂n)

2} as a function of α, σ(1), · · · , σ(n − 1), where x̂n is the
optimal estimate of x based on measurements up to time instant n− 1. (Hint:
one could normalize the noise). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (10p)

Answer: We let w(t) = σ(t)w̃(t), where w(t) ∈ N(0, 1), then y(t) = x +

σ(t)w̃(t). Thus P (t+ 1) = P (t)− P (t)
P (t)+σ(t)2

, or P (t+ 1)−1 = P (t)−1 + σ(t)−2.

Thus P (n)−1 =
∑n−1

i=0 σ(i)−2 + α−2.


