
Solution to Exam in SF2832 Mathematical Systems Theory
08.00-13.00, 16 January 2017

We reserve the right to correct typographical errors.

Examiner: Xiaoming Hu, tel. 790 7180.

Allowed material: Anders Lindquist & Janne Sand, An Introduction to Mathematical
Systems Theory, Per Enqvist, Exercises in Mathematical Systems Theory, your own class
notes, and β mathematics handbook.

Solution methods: All conclusions should be carefully motivated.

Note! Your personal number must be stated on the cover sheet. Number your pages and
write your name on each sheet that you turn in!

You need 45 points credit (including your still valid bonus) to pass the exam. The other
grade limits are listed on the course home page.

Read this before you start: 1. The problems are NOT ordered in terms of difficulty.
2. If the problem seems to be too complex (either in terms of calculation or abstraction),
then it is likely that you have not found the best method yet.

1. Determine if each of the following statements is true or false. You must justify your
answers. All matrices involved are assumed to be constant matrices unless otherwise
specified.

(a) Consider an n-dimensional time-varying system ẋ = A(t)x, where A(t) is con-
tinuous. If AT (t) = −A(t) ∀t ∈ R, then ∥x(t)∥2 = ∥x(t0)∥2 ∀t ≥ t0. . . . . . . (5p)

Answer: True. Since (∂Φ(t,s)
∂s )T = A(s)Φ(t, s)T , thus Φ(t, s)T = Φ(s, t), then

∥x(t)∥2 = x(t0)
TΦ(t, s)TΦ(t, s)x(t0) = ∥x(t0)∥2 ∀t ≥ t0

(b) Consider ẋ = Ax, y = Cx, where x ∈ Rn. If x0 /∈ ker Ω (the unobservable
subspace), then y(t) = CeAtx0 ̸= 0 for any t > 0. . . . . . . . . . . . . . . . . . . . . . . . . (5p)

Answer: False, for example, ẋ1 = x2, ẋ2 = −x1, y = x1.

(c) Assume (A,B) is controllable and (C,A) is observable. Then (C,A + BK) is
also observable for any K. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5p)

Answer: False, due to possible pole zero cancellation.

(d) Assume (A,B) is controllable. The algebraic Riccati equation ATP + PA −
PBBTP = 0 has a positive definite solution P if and only if A is a stable
matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5p)

Answer: True. If P is positive definite, then the above equation is equivalent
to a Lyapunov equation if we let Q = P−1. (Note that a minus sign is missed.
The subject in concern should be “-A”. Thus, as the problem appears in the
exam, the answer should be false).

1



Page 2 of 4 Exam 2017 SF2832

2. Consider :

ẋ = Ax+ bu

where

A =

−1 1 1
0 α 1
0 0 1

 , b =

01
1

 , and α ̸= 1 is constant.

(a) Find the state transition matrix eAt. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (6p)

Answer: Find first the state transition matrix for the subsystem consisting of
the last two variables, then plug in x2(t), x3(t) to the first equation. The rest is
omitted.

(b) When is the pole placement problem solvable? . . . . . . . . . . . . . . . . . . . . . . . . . . (3p)

Answer: When the system is controllable, i.e., α ̸= 0,−2.

(c) Let u = 0. Find all solutions x(t) that lie on the plane D = {x ∈ R3 : [0 1 1]x =
0}. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(5p)
Answer: Denote c = [0 1 1], then all such solutions are solutions with initial
conditions in ker Ω. When α = 2, ker Ω = span{[1 0 0]T , [0 1 −1]T }, otherwise
ker Ω = span{[1 0 0]T }.

(d) Find u(t) = Kx that makes D invariant, i.e., [0 1 1]x(t) = 0, ∀t > 0 if
[0 1 1]x(0) = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3p)

Answer: u = −1
2(αx2 + 2x3).

(e) Do the solutions on D converge to the origin as t → ∞ when the control
designed in (d) is applied? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3p)

Answer: When α < 0.

3. Consider the transfer matrix

R(s) =

[ α
s+2

2
s+2

2
s+β

1
s+2

]
,

where α, β are real nonzero constants.

(a) Determine the McMillan degree of R(s). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (8p)

Answer: δ(R) = 3 if β ̸= 2. When β = 2, δ(R) = 2 if α ̸= 4; otherwise
δ(R) = 1.

(b) Find the standard reachable realization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (8p)

Answer: One should consider two cases: β = 2 and β ̸= 2. The detail is
omitted.

(c) When is the realization in (b) also observable? . . . . . . . . . . . . . . . . . . . . . . . . . . (4p)

Answer: When δ(R) = 2.
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4. Consider the optimal control problem

min
u

J =

∫ ∞

0
(xTQx+ u2)dt s.t. ẋ = Ax+Bu, x(0) = x0,

where,

A =

[
k 1
0 1

]
, B =

[
0
1

]
, Q =

[
0 0
0 q2

]
.

(a) Show that for k = 0, the associated algebraic Riccati equation (ARE) does not
have a positive definite solution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4p)

Answer: Let P =

(
p1 p2
p2 p3

)
, then p1 = p2 = 0.

(b) Now suppose q = 0. What is the condition on k such that the ARE has a
positive definite solution? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (8p)

Answer: −A must be a stable matrix, thus k > 0.

(c) Again suppose q = 0. Show that when the ARE has a positive definite solution,
the closed-loop system has poles {−k,−1}. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4p)
Answer: From the ARE, we have A−BBTP = −P−1ATP .

(d) When q = 0, what is the condition on k such that the optimal control exists?
(4p)

Answer: k ̸= 0.

5. (a) Let C =
[
C1 0

]
and A =

[
A11 A12

A21 A22

]
, where C1 is an k×n1 matrix with rank

n1. The matrices A12 and A22 have dimensions n1 × (n − n1) and (n − n1) ×
(n−n1) respectively. Show that (C,A) is observable if and only if (A12, A22) is
observable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(5p)

Answer: Clearly C1x1(t) = 0 ∀t ≥ 0 iff x1 = 0 ∀t ≥ 0, thus ẋ1 = 0. Therefore
A12x2 = 0. The whole system is observable iff that A12x2 = 0 implies x2 = 0,
i.e., (A12, A22) is observable.

(b) Let (A,B) be controllable and consider the equation

AP + PAT +BBT +Q = 0, (1)

where Q ≥ 0. This equation is slightly different from that in Corollary 4.3.6 of
the compendium.

Show that the following statements are equivalent

(a) A is a stable matrix

(b) the equation has a positive definite solution P .

(Hint: try to apply Corollary 4.3.6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5p)

Answer: Let B̄B̄T = BBT +Q, then (A, B̄) is also controllable. Then we can
use Corollary 4.3.6.
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(c) Consider a controllable system ẋ = Ax + Bu. Given an initial state x0, using
Bellman’s principle (or as is shown in Homework 3) we know that the minimum
energy control for reaching x(t1) = 0 can be written in feedback form as

u = −BT eA
T (t1−t)W (t, t1)

−1eA(t1−t)x(t) ≜ −BTP (t, t1)x(t),

where W (t, t1) is the reachability Gramian.

Show that if we use the constant gain feedback control u = −BTP (0, t1)x(t)
where t1 is any positive constant, then limt→∞ x(t) = 0, ∀x0 ∈ Rn. (Hint: show

first −AP (0, t1)
−1 − P (0, t1)

−1AT +BBT = e−At1BBT e−AT t1) . . . . . . . . . . (10p)

Answer:Denote P (0, t1) = eA
T t1W (0, t1)

−1eAt1 , then P−1(0, t1) =
∫ t1
0 e−AsBBT e−AT sds.

Let Q = e−AtBBT eA
T t, then Q̇ = −AQ − QAT . Thus, e−At1BBT e−AT t1 −

BBT = −AP−1 − P−1AT , which leads to (A − BBTP (0, t1))P
−1 + P−1(A −

BBTP (0, t1))
T = −BBT − e−At1BBT e−AT t1 .

Good luck!


