
Solution to Exam in SF2832 Mathematical Systems Theory
08.00-13.00, April 11, 2017

Examiner: Xiaoming Hu, tel. 790 7180.

Allowed material: Anders Lindquist & Janne Sand, An Introduction to Mathematical
Systems Theory, Per Enqvist, Exercises in Mathematical Systems Theory, your own class
notes, and β mathematics handbook.

Solution methods: All conclusions should be carefully motivated.

Note! Your personal number must be stated on the cover sheet. Number your pages and
write your name on each sheet that you turn in!

You need 45 points credit (including your still valid bonus) to pass the exam. The other
grade limits are listed on the course home page.

Read this before you start: 1. The problems are NOT ordered in terms of difficulty.
2. If the problem seems to be too complex (either in terms of calculation or abstraction),
then it is likely that you have not found the best method yet.

1. Determine if each of the following statements is true or false. You must justify your
answers. All matrices involved are assumed to be constant matrices unless otherwise
specified.

(a) Consider an n-dimensional time-varying system ẋ = A(t)x, where A(t) is con-
tinuous. If AT (t) = −A(t) ∀t ∈ R, then ΦT (t, s) = Φ−1(t, s), where Φ(t, s) is
the state transition matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5p)

Answer: True, since (∂Φ(t,s)
∂s )T = A(s)Φ(t, s)T , thus Φ(t, s)T = Φ(s, t) =

Φ−1(t, s).

(b) Consider ẋ = Ax, y = cx, where x ∈ Rn, y ∈ R. If rank A < n− 1, then (c, A)
is never observable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5p)

Answer: True. (c, A) observerble is the same as that ż = AT z+ cT v is control-
lable. Putting the system into the canonical controllable form, we know that
AT must have rank at least n− 1.

(c) Consider ẋ = Ax+ bu, y = cx, where x ∈ Rn, u ∈ R, y ∈ R. If c(sI −A)−1b =
1

sn+an−1sn−1+···+a0
, then (c, A+ bk) is observable for any k. . . . . . . . . . . . . . . (5p)

Answer: True. We can show this by realizing the transfer function in standard
controllable realization.

(d) Consider the Riccati differential equation:

Ṗ (t) = −ATP (t)− P (t)A+ P (t)BBTP (t)− CTC

P (t1) = P1,

where C is a p×n matrix and p < n. If P1 is only positive semidefinite (det P1 =
0), then det P (t) = 0 for any t < t1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5p)

Answer: False, for example, when the system is minimal.
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2. Consider :

ẋ = Ax+ bu

y = cx

where

A =

 0 −a1 0
a1 0 −a2
0 a2 0

 , b =

10
0

 , c =
[
1 0 0

]
,

and a1 > 0, a2 > 0 and a21 + a22 = 1.

(a) Find the state transition matrix eAt. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (6p)

Answer: eAt = I +A sin(t) +A2(1− cos(t)).

(b) When can the system be asymptotically stabilized by a control u = Kx ? (4p)

Answer: The system is always controllable.

(c) For any given initial state [0 x2(0) x3(0)]
T where x2(0)

2 + x3(0)
2 ̸= 0, find an

open-loop control u(t) (u(t) is expressed as a function of the initial state and
time t) such that x1(t) = 0 ∀t ≥ 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (6p)

Answer: We can see easily that u = a1x2(t) will keep x1(t) zero, but it
is not in open-loop. But with the control and the initial condition, we ha-
ve ẋ2 = −a2x3, ẋ3 = a2x2, thus x2(t) = x2(0) cos(a2t) − x3(0) sin(a2t), then
u = a1(x2(0) cos(a2t)− x3(0) sin(a2t)).

(d) If we plot x2(t), x3(t) obtained in (c) on the (x2, x3)-plane for 0 ≤ t < ∞, how
does the trajectory look? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(4p)

Answer: A circle centered at the origin and with radius
√

x2(0)2 + x3(0)2.

3. Consider the transfer matrix

R(s) =

[
α

s+1
1

s+β
1

s+1
1

s+β

]
,

where α, β are real nonzero constants.

(a) Determine the McMillan degree of R(s). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (8p)

Answer: If α ̸= 1 or β ̸= 1, δ(R) = 2. If α = β = 1, δ(R) = 1.

(b) Find the standard reachable realization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (8p)

Answer: omitted.

(c) When is the realization in (b) also observable? . . . . . . . . . . . . . . . . . . . . . . . . . . (4p)

Answer: α ̸= 1 and β = 1.

4. Consider the optimal control problem

min
u

J =

∫ t1

0
uTudt+ x(t1)

TSx(t1) s.t. ẋ = Ax+Bu, x(0) = x0,
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where (A,B) is controllable and S is positive definite.

Let u = −BTP (t1 − t)x denote the optimal control.

(a) Solve the Riccati equation to obtain P (t1 − t). (Hint: to determine P is the
same as determining P−1 if P is invertible) . . . . . . . . . . . . . . . . . . . . . . . . . . . . (10p)

Answer: By using the adjoint system, we have Y = exp(AT (t1 − t))S, X =
exp(−A(t1 − t)) +

∫ t1−t
0 exp(−As)BBT exp(−AT s)dsexp(AT (t1 − t))S.

P−1 = XY −1 = exp(−A(t1−t))S−1exp(−AT (t1−t))+
∫ t1−t
0 exp(−As)BBT exp(−AT s)ds.

(b) Compute limt1−t→∞ P (t1 − t) for the case A is a stable matrix. . . . . . . . . . .(4p)

Answer: If A is stable, P−1 → ∞
(c) What are the eigenvalues of limt1−t→∞(A− BBTP (t1 − t)) for the case −A is

a stable matrix? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (6p)

Answer: If −A is stable, P−1 →
∫∞
0 exp(−As)BBT exp(−AT s)ds, which sa-

tisfies −P−1AT − AP−1 + BBT = 0. Thus, A − BBTP = −P−1ATP , which
has same eigenvalues as −AT thus as −A.

5. (a) Let

A(t) =

[
a11(t) a12(t)
a21(t) a22(t)

]
.

Show

det Φ(t, t0) = e
∫ t
t0
(a11(s)+a22(s))ds,

where Φ(t, t0) is the state transition matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5p)

Answer: Let Φ(t, t0) =

[
ϕ11 ϕ12

ϕ21 ϕ22

]
, then det Φ(t, t0) = ϕ11ϕ22 − ϕ12ϕ21.

d
dt(det Φ(t, t0)) = (a11 + a22)det Φ(t, t0), and det Φ(t0, t0) = 1.

(b) Consider the algebraic Riccati equation

ATP + PA− PBBTP + CTC = 0.

(1) Assume P is a real positive semidefinite solution. Show that kerP is
A-invariant (i.e, ∀x ∈ kerP, Ax ∈ kerP ) and kerP ⊂ kerC. . . . . . . . . . (4p)
Answer: Suppose x ∈ KerP . Multiplying both sides of the ARE by x:

PAx+ CTCx = 0,

similarly xTCTCx = 0. Therefore x ∈ KerC, which implies kerP ⊂ kerC.
Furthermore, this leads to that PAx = 0. Thus kerP is A-invariant.

(2) Show that if (C,A) is observable, then every positive semidefinite solution
P is positive definite. Hint: use the conclusions in (1) . . . . . . . . . . . . . . . (4p)
Answer: When (C,A) is observable, the only A-invariant subspace in
KerC (unobservable subspace) is {0}. Thus, kerP = {0}.

(c) All conclusions about Kalman filter still hold if we replace E{w(t)wT (t)} =
R > 0 by E{w(t)wT (t)} = R(t) > 0. Namely allow the covariance matrix for
the noise to be time-varying.
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Now consider the problem of measuring some constant scalar quantity x. Sup-
pose initially nothing is known about x (i.e. P (0) = ∞). Then at each time
instance t = 0, 1, · · · , n, y(t), a measurement of x, is made with error covarian-
ce r(t).

(1) Express the optimal estimation of x at t, x̂(t), which is based on measure-
ments up to t− 1, by Kalman filter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3p)
Answer: omitted.

(2) Write down the expression of P (t) in the Kalman filter in terms of r(i), i =
0, 1, · · · ,t− 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4p)
Answer: P (t)−1 =

∑t−1
i=0 r(i)

−1.

Good luck!


