
Solution to Exam in SF2832 Mathematical Systems Theory
Part one: 8:00-10:00, April 7, 2021

Examiner: Xiaoming Hu, tel. 0707967831.

Important! This exam consists of two parts. The second part starts at 10:20 and you will
receive questions for Part two after the exam on Part one is concluded. You write the
solutions on paper and then upload the scanned (or photoed) solutions in pdf format to
Canvas. You must upload the solutions to Part one before Part two of the exam starts!

Allowed material: Anders Lindquist & Janne Sand, An Introduction to Mathematical
Systems Theory (pdf or paper version), Per Enqvist, Exercises in Mathematical Systems
Theory (pdf or paper version), your own class notes (digital or paper version), and β
mathematics handbook.

Note! Your personal number must be stated on the cover sheet. Number your pages and
write your name on each sheet that you turn in!

You need 40 points credit to pass the exam. The other grade limits are listed on the
course home page.

Matrix notation: We use A(t) to denote a time-varying matrix and A to denote a
constant matrix.

1. (20p) Determine if each of the following statements is true or false. You must
motivate your answers. No motivation no point.

(a) Consider an n-dimensional system ẋ(t) = Ax(t). If limt→∞ ‖eAt‖ =∞, then A
has at least one eigenvalue with positive real part. . . . . . . . . . . . . . . . . . . . . . . (6p)

Answer: False. A counter example is the double integrator.

(b) Consider ẋ = Ax+Bu, y = Cx, where x ∈ Rn, u ∈ R, y ∈ R.

b1. If rank A < n− 1, then (C,A) can never be observable. . . . . . . . . . . . . . (3p)

Answer: True, since (C,A) being observable is the same as (AT , CT ) being
controllable, which implies that AT must have rank at least n− 1.

b2. If (A,B) is controllable, then we can always find a C such that (C,A) is
observable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(3p)

Answer: True, after converting the system into the canonical controllable form,
we can choose for example C = (1 0 · · · 0).

(c) Consider a strictly proper transfer matrix R(s). Let r denote the degree of the
least common denominator of the elements of R(s). Then δ(R) ≥ r, where δ(R)
is the McMillan degree of R(s). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4p)

Answer: True, since for any minimal realization deg ρ(s) = deg det(sI −A) =
δ(R), and ρ(s) is a common denominator of the elements of R(s).

1



Page 2 of 2 Exam 2021 SF2832

(d) Suppose A is a stable matrix (all eigenvalues of A have negative real parts).
Then, for any positive definite matrix P , −(ATP + PA) is at least positive
semi-definite. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4p)

Answer: False, a counter example is P = I and A = (0 2;−1 − 1).

2. (25p) Consider :

ẋ = Ax+ bu (1)

y = cx,

where x ∈ R3, u ∈ R, y ∈ R, and the transfer function is

r(s) = c(sI −A)−1b =
s2 + αs+ 1

(s2 + 1)(s+ 1)
,

where α is a constant. Assume c =
[
1 α 1

]
.

(a) Find matrices A and b. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5p)

Answer: A = (0 1 0; 0 0 1;−1 − 1 − 1), b = (0 0 1)T .

(b) Is your (A, b) reachable? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2p)

Answer: Yes.

(c) Does limt→∞ e
Atx0 = 0 for all x0 ∈ R3? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2p)

Answer: No, since A has two eigenvalues on the imaginary axis.

(d) For what α is (c, A) NOT observable? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (6p)

Answer: α = 0, 2.

(e) Find u(t) = Kx that makes D = {x ∈ R3 : cx = 0} invariant, i.e., cx(t) =
0, ∀t ≥ 0 if cx(0) = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3p)

Answer: u(t) = Kx should make ẏ ≡ 0, which leads to u = x1 + (1− α)x3.

(f) For α = −2, give explicit expression for the state trajectories x(t) obtained in
(e). A solution x(t) obtained in (e) means a solution to (1) when u(t) = Kx is
used and cx(0) = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5p)

Answer: With the constraint y = 0 the system is reduced to ẋ1 = x2, ẋ2 =
−x1 + 2x2. Then all such solutions can be expressed as x(t) = eNtx0, where
eNt = (et − tet tet;−tet et + tet).

(g) For which α you find in (d) can we find a two dimensional minimal realization
of the r(s) such that for the minimal realization there exists u(t) = Kx that
makes both cx(t) = 0, ∀t ≥ 0 if cx(0) = 0 and limt→∞ x(t) = 0. . . . . . . . . . . (2p)

Answer: α = 2.


