
CHAPTER 7

Output regulation and internal model principle

Consider a MIMO system

(7.1) ẋ = Ax+Bu
y = Cx.

An important control problem is to design a controller such that the out-
put of the closed-loop system asymptotically tracks a reference signal. In
the literature this problem is called the servo problem. Another important
problem is the regulation of the output to zero, regardless of external dis-
turbances and the initial state. In this chapter we treat these two classical
problems in an integrated fashion.

Let us start with an example.

Example 7.1. Consider

ẋ1 = x2

ẋ2 = a1x1 + a2x2 + bu+ dw1

y = x1,

where the disturbance w1 is unknown but constant. We want the output y to
track a sinusoidal signal yd = β sin(ωt), while rejecting the disturbance.

For this system V∗ = 0, thus DDP does not have a solution. On the other
hand, we know something about the disturbance in this case (a constant). In
particular, we can consider w1 as being generated by the following system:

ẇ1 = 0.

Similarly, yd can be generated by

ẇ2 = ωw3

ẇ3 = −ωw2

yd = w2,

where one chooses the right initial state to make the amplitude equal to
β. In general, all reference or disturbance signals that are Bohl functions
(including step, ramp or sinusoid) can be generated by such a dynamical
model. Such a model is called an exo-system. Note that in the exo-system
for the sinusoid, the frequency is fixed, but the amplitude and phase are not.
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Now we can incorporate the exo-systems into the plant model and obtain

ẋ1 = x2

ẋ2 = a1x1 + a2x2 + bu+ dw1

ẇ1 = 0
ẇ2 = ωw3

ẇ3 = −ωw2

e = x1 − w2,

where e is the tracking error. Then the problem becomes to design a controller
for the aggregated system such that e→ 0.

Now we are ready to define the output regulation problem in general.
Consider a MIMO plant

(7.2)
ẋ = Ax+Bu+ Pw
ẇ = Sw
e = Cx−Qw,

where w models both the reference signal to track (think of w2 in the exam-
ple) and the disturbance to reject (think of w1 in the example), and e is the
tracking error. In this chapter we consider two types of output regulation
problems.

1. Full information output regulation problem. Given a system (7.2), find a
controller u = Kx+ Ew, such that

a. x = 0 of
ẋ = (A+BK)x

is asymptotically stable;
b. For all initial states, limt→∞ e(t) = 0.

2. Error feedback output regulation problem. Given a system (7.2), find a
controller

(7.3) ż = Fz +Ge
u = Hz

such that
a. (x, z) = (0, 0) of

(7.4) ẋ = Ax+BHz
ż = GCx+ Fz

is asymptotically stable;
b. For all initial states, limt→∞ e(t) = 0.

Remark 7.1. In both cases, condition a) implies that the closed-loop
system is asymptotically stable when w is set to zero.
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We note that the solution to the full information problem makes sense
in practice only when the plant is free from disturbances. However, it lays
the foundation to that of the error feedback problem. We also note that
if w tends to zero or if S is stable, then the problems are reduced to the
stabilization problems. Thus we typically assume that w is antistable. This
can be defined as

Definition 7.1. A system

ẇ = Sw

is called antistable if S does not have any eigenvalue with strictly negative
real part.

7.1. Full information output regulation

Theorem 7.1. Suppose (A,B) is stabilizable and S is antistable in (7.2).
Then the full information output regulation is solvable if and only if the
linear matrix equations (Sylvester)

(7.5) ΠS = AΠ + P +BΓ
0 = CΠ −Q

are solved by some Π and Γ.

Note that in the first equation, the model of the exo-system (the matrix
S) is used. This suggests that without the incorporation of such a model,
one can not in general solve the output regulation problem. This fact is
generally known as the internal model principle.

Proof

Sufficiency: Suppose K is such that A+BK is stable. We show

u = K(x− Πw) + Γw

where Π is from equation (7.5), solves the full information problem. Plug in
the controller to (7.2)

(7.6)
ẋ = (A+BK)x+ (P −BKΠ +BΓ)w
ẇ = Sw
e = Cx−Qw.

Apparently requirement a) is fulfilled. Then we know from the previous
chapter (Proposition 6.2) that x tends to an invariant subspace x = Π̄w
where Π̄ is defined by

Π̄S = (A+BK)Π̄ + P −BKΠ +BΓ.

It is obvious that Π̄ = Π is a solution. Since S and A + BK do not have
any common eigenvalue, the solution is also unique (see, for example, [4]).
Thus, in steady state we have

e = CΠ̄w −Qw = CΠw −Qw = 0.

Thus e tends to zero.
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Necessity: By requirement a), any controller u = Kx + Ew that solves
the full information problem must be chosen so that A+BK is stable. Thus
x(t) will approach an invariant subspace x = Π̄w where Π̄ is defined by

Π̄S = AΠ̄ + P +B(KΠ̄ +E).

One can take Γ = KΠ̄ + E in this case. Obviously, in order to have e → 0,
the solution Π̄ should also satisfy the condition

CΠ̄ −Q = 0.

7.2. Error feedback output regulation

Theorem 7.2. Suppose (A,B) is stabilizable, the pair[
C −Q] , [A P

0 S

]
is detectable and S is antistable in (7.2). Then the error feedback output
regulation is solvable if and only if the linear matrix equations

(7.7) ΠS = AΠ + P +BΓ
0 = CΠ −Q

are solved by some Π and Γ.

In other words, under the assumptions, the error feedback problem is
solvable if and only if the full information one is solvable.

Proof

Sufficiency: under the assumption, we can build an observer for (x,w):

(7.8)
[
ż1
ż2

]
=
[
A P
0 S

] [
z1
z2

]
+
[
L1

L2

]
(Cz1 −Qz2 − e) +

[
B
0

]
u,

where L1 and L2 are chosen such that the error dynamics in (7.9) is stable.
Suppose K is such that A+BK is stable. We show

u = K(z1 − Πz2) + Γz2
solves the error feedback problem.

Let z̃1 := z1−x, z̃2 := z2−w be the tracking errors, then we can rewrite
the closed-loop system as
(7.9)

ẋ = (A+BK)x+ Pw −BKΠw +BΓw +BKz̃1 +B(Γ −KΠ)z̃2[ ˙̃z1
˙̃z2

]
=

[
A+ L1C P − L1Q
L2C S − L2Q

] [
z̃1
z̃2

]
ẇ = Sw

Apparently requirement a) is fulfilled. Then we can easily show that as
t→ ∞, (x, z̃) tends to the invariant subspace defined by

z̃ = 0, x = Πw.
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The proof of necessity is similar to the full information case.

7.3. Output regulation and zero dynamics

In this section we discuss the solvability of the Sylvester equation (7.7).
In [9] Hautus has shown that the solvability of (7.7) can be characterized

by the transmission polynomials of system (7.1) and system (7.2) (where u
is considered as the input, and e the output).

Proposition 7.3. (7.7) is solvable if system (7.1) and system (7.2) have
the same transmission polynomials.

Under some reasonable assumptions we can deduct the following result.

Proposition 7.4. Suppose (A,B) is stabilizable and (C,A) is detectable,
and S is antistable. Then (7.7) is solvable if and only if[

sI −A B
−C 0

]
has full row rank for every s0 ∈ σ(S).

In plain (relatively) language, this implies that system (7.1) is right-
invertible and its zeros do not coincide with the eigenvalues of S. We use
a system that has equal number of inputs and outputs, and has a relative
degree (r1, . . . , rm), to illustrate this.

Without loss of generality, we can transform such a system into the
normal form:

(7.10)

ż = Nz +Dξ + P0w

ξ̇i
1 = ξi

2 + P i
1w

...
ξ̇i
ri−1 = ξi

ri
+ P i

ri−1w

ξ̇i
ri

= Riz + Siξ + ciA
ri−1Bu+ P i

ri
w

yi = ξi
1, i = 1, . . . ,m

where
ξ = (ξ11 , · · · , ξ1r1

, · · · , ξm
rm

)T .

Note that in order to avoid confusion, we have changed a matrix notation
for the normal form. As we have studied,

ż = Nz

defines the zero dynamics of the system.
In the steady state, e = 0 or y = Qw implies that the matrix Q is part

of the Π matrix that solves the sylvester equation. Plug in yi = πi
1w = Qiw

to the normal form, and let ξi
j = πi

jw, we can obtain iteratively

πi
jw = πi

j−1Sw − P i
j−1w, i = 1, ...,m; j = 2, ..., ri.
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In particular, if P i
j = 0,∀i, j,

πi
jw = yj−1

i = QiS
j−1w.

Thus the only part of Π in (7.7) we need to solve for is corresponding to
z = Π1w:

(7.11) Π1S = NΠ1 +DΠ2 + P0,

where Π2 has components of πi
j . It is well known in the literature [4] (and

mentioned previously) that (7.11) has a unique solution if and only if N and
S do not have any common eigenvalue.

Once Π1 is obtained, we can solve the following equations for Γ:

QiS
riw = RiΠ1w + SiΠ2w + ciA

ri−1Bu+ P i
ri
w, i = 1, ...m,

here we let u = Γw.




