

SF2842: Geometric Control Theory Solution to Homework 2

Due February 22, 16:50pm, 2017

1. Consider the system

$$\dot{x} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -2 & 1 & 0 \\ 2 & 0 & 0 & 1 \\ 0 & 0 & 1 & -1 \end{pmatrix} x + \begin{pmatrix} \alpha & 1 \\ 2 & 1 \\ \alpha & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \end{pmatrix}$$
$$\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} x,$$

where α is a real constant.

- (a) For what values of α is the noninteracting control problem solvable?(2p) Answer: $\alpha \neq 2$.
- (c) Suppose now the first output y_1 is taken away from the system, namely only y_2 is kept. What is the (transmission) zero(s) of the system now if $\alpha = 2$? (3p) **Answer:** We can regard $2u_1 + u_2$ as one control, then the system is equivalent to a SISO system. The zeros are -1, -2.
- **2.** Consider the system

 $\begin{array}{rcl} \dot{x}_1 &=& x_2 \\ \dot{x}_2 &=& x_3 \\ \dot{x}_3 &=& -x_1 - 3x_2 - 3x_3 + w_1 \\ \dot{w}_1 &=& 2w_2 \\ \dot{w}_2 &=& -2w_1 \\ y &=& c_1x_1 + c_2x_2 + x_3, \end{array}$

where c_1 , c_2 are real constants and $c_1 - c_2 + 1 \neq 0$.

(a) Compute the invariant subspace $x = \Pi w$. [2p] **Answer:** Denote $\dot{w} = Sw$. Let the invariant subspace be $x_i = \pi_i w$, i = 1, 2, 3. Solving the Sylvester equation we have $\pi_2 = \pi_1 S$, $\pi_3 = \pi_1 S^2$, and $\pi_1 S^3 = -\pi_1 - 3\pi_1 S - 3\pi_1 S^2 + [1 \ 0]$. Thus $\pi_1 = \frac{1}{125}[-11 \ 2]$. (b) For what value(s) of c_1, c_2 is the above system (consisting of x and w) unobservable? Explain why. [2p]

Answer: We can view the above system as a control system with $u = w_1$. There will not be zero pole cancellation if $c_1 - c_2 + 1 \neq 0$, thus the control system is both controllable and observable. The exo system is also observable. Thus the overall system is unobservable iff an eigenvalue of the exo system is a transmission zero, namely $c_1 = 4$, $c_2 = 0$.

- (c) Can we find c_1, c_2 such that $y(t) = w_1(t)$ in the steady state? [2p] Answer: This is true since $\pi_1, \pi_1 S$ must be linearly independent.
- **3.** Consider a control system subject to disturbance:

 $\begin{array}{rcl} \dot{x}_1 &=& x_2 \\ \dot{x}_2 &=& -2x_1 - x_2 + x_3 + u + 2w_1 \\ \dot{x}_3 &=& \alpha x_3 + u \\ y &=& x_1, \end{array}$

where w_1 is an unknown nonzero constant (disturbance) and α is a real constant.

- (a) Is the disturbance decoupling problem (DDP) solvable?(1p) **Answer:** No.
- (b) When u = 0, show that if α < 0, then for all initial conditions, y(t) → w₁ as t → ∞.
 Answer: In this case we can easily show that on the invariant subspace, x₁ = w₁.
- (d) For $\alpha = 2$, solve the full information output regulation problem for $y_r = 0$. [3p]

Answer: In general, we can consider y_r as generated by $\dot{w}_2 = 0$. This gives $u = -k(x_3 - (2 - 2)w) - (4 - 4)w$, where k > 0. With the particular $y_r = 0$, one can set $w_2 = 0$.