

Solution to Final Exam of SF2842 Geometric Control Theory

December 21 2011, 14-19

Examiner: Xiaoming Hu, phone 790 71 80, mobile 070-796 78 31.

Allowed written material: All course material (except the old exams and their solutions) and β mathematics handbook.

<u>Solution methods</u>: All conclusions must be properly motivated. Note: the problems are not necessarily ordered in terms of difficulty.

<u>Note!</u> Your personnummer must be stated on the cover sheet. Number your pages and write your name on each sheet that you turn in!

Preliminary grades: 31 points give grade C, 37 points B and 43 points give grade A.

- 1. Determine if each of the following statements is *true* or *false* and **motivate** (no motivation no score) your answer briefly (for example, to show a statement is false, a counter-example is enough).
 - (a) Consider a square linear system that is both controllable and observable.

$$\dot{x} = Ax + Bu
y = Cx$$
(1)

where $x \in \mathbb{R}^n$, $u \in \mathbb{R}^m$, $y \in \mathbb{R}^m$.

If $V^* \neq 0$, then system (1) can be made unobservable by some u = Fx. ...(2p) **Answer:** True, by virtue of the definition for V^* .

- (b) If the system (1) has relative degree (r_1, \dots, r_m) , then the only reachability (controllability) subspaces the system has are $\{0\}$ and \mathbb{R}^n (2p) **Answer:** False, since controllability subspaces have nothing to do with outputs.

Answer: True, since it is exactly an output tracking input problem and all solvability conditions are fulfilled .

(d) Consider

$$\dot{x} = \sum_{i=1}^{m} g_i(x)u_i,$$

where $x \in N(0) \subset \mathbb{R}^n$ and m < n. Suppose $\omega_i(x), i = 1, \dots, n - m$ are row vectors that are linearly independent on N(0) such that $\omega_i(x)g_j(x) = 0, \forall i, j$.

If for some $i' \leq n - m$, $\frac{\partial z(x)}{\partial x} = \omega_{i'}(x)$, where z(x) is a scalar function, then the system is not controllable in some neighborhood of the origin.

Answer: True. Since $\dot{z}_i(x) = 0$, z_i cannot be controlled.

(e) Consider a nonlinear single-input single-output system

$$\dot{x} = f(x) + g(x)u
y = h(x)$$

Answer: True, since the system is exactly linearizable.

2. Consider the system

$$\dot{x} = \begin{pmatrix} -2 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} x + \begin{pmatrix} 0 & 0 \\ 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{pmatrix} u$$

$$u = (1 \ 0 \ 0) x$$

Answer: omitted.

3. Consider the system

$$\dot{x} = \begin{pmatrix} 2 & 2 & 2 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 2 \\ 1 & 1 & 0 & 1 \end{pmatrix} x + \begin{pmatrix} 0 & -1 \\ \alpha_1 & 1 \\ 0 & 0 \\ 0 & \alpha_2 \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \end{pmatrix}
\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} x.$$

Design real coefficients α_1, α_2 such that the following two conditions are both satisfied simultaneously

- 4. Consider a control system subject to disturbance:

$$\begin{array}{rcl} \dot{x}_1 & = & x_2 \\ \dot{x}_2 & = & -x_1 - x_2 + x_3 + u + w_1 \\ \dot{x}_3 & = & \alpha x_3 + u \\ y & = & x_1, \end{array}$$

where w_1 is an unknown nonzero constant (disturbance) and α is a real constant. Note that in this problem you are allowed to identify stabilizability with controllability and detectability with observability.

- (b) When u = 0, for what α the state trajectory x(t) is always bounded?(3p) **Answer:** $\alpha < 0$ since we need the system matrix is Hurwitz.
- **5.** Consider in a neighborhood N of the origin

$$\dot{x}_1 = x_2^3 + e^{x_3} u
\dot{x}_2 = -x_2 + \alpha x_1^3 + x_2^2
\dot{x}_3 = -x_2^3 + e^{x_3} u
y = x_3,$$

where α is a constant.

$$\dot{\xi}_1 = -z_1^3 + e^{\xi_1} u
\dot{z}_1 = -z_1 + \alpha (z_2 + \xi_1)^3 + z_1^2
\dot{z}_2 = 2z_1^3
y = \xi_1$$

$$\dot{z}_1 = -z_1 + \alpha z_2^3 + z_1^2
\dot{z}_2 = 2z_1^3$$

It is asymptotically stable if $\alpha < 0$, otherwise unstable.

- (d) Show the system without the output is not exactly linearizable......(2p) **Answer:** Since the linearized system is not controllable.