
Solution to Final Exam of SF2842 Geometric Control
Theory
March 11 2020

Examiner: Xiaoming Hu, phone 790 71 80, mobile 070-796 78 31.

Allowed written material: the lecture notes, the exercise notes, your own class notes and
β mathematics handbook.

Solution methods: All conclusions must be properly motivated. Note: the problems are
not necessarily ordered in terms of difficulty.

Note! Your personnummer must be stated on the cover sheet. Number your pages and
write your name on each sheet that you turn in!

Preliminary grades: 45 points give grade E, 50 points D, 61 points C, 76 points B, and 91
points A.

1. Determine if each of the following statements is true or false and motivate (no
motivation no score) your answer briefly (for example, to show a statement is false,
a counter-example is enough).

(a) Consider a linear system

ẋ = Ax+Bu

y = Cx (1)

where x ∈ Rn, u ∈ Rm, y ∈ Rp.

If V ∗ = 0 for system (1), then (C,A+BF ) is observable for any F . . . . . . (5p)

Answer: Ture, since ker ΩF ⊂ V ∗ = 0 for any F .

(b) Let p = m. If system (1) has degree (r1, · · · , rm) and
∑m

i=1 ri = n, then it does
not have any (transmission) zero. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5p)

Answer: Ture, since V ∗ = 0 in this case and the number of zeros equal the
dimension of V ∗ minus the dimension of R∗.

(c) Consider a controllable and observable (when w is set to 0) linear system

ẋ = Ax+Bu+ Ew

y = Cx,

where w is disturbance. If (A,E) is also controllable, then Im E is not contained
in V ∗. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5p)

Answer: False, since (A+BF,E) may not be controllable for some F although
(A+ EK,E) is always controllable.

(d) Consider a nonlinear single-input system

ẋ = f(x) + g(x)u
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where x ∈ Rn, f, g can be differentiated infinitely many times and f(0) = 0.
Let A = ∂f

∂x |x=0 and b = g(0).

A necessary condition for the existence of an output mapping h(x) such that
the system has relative degree n at the origin is that (A, b) is controllable. (5p)

Answer: True, since the existence of such h(x) would imply that the system
is exactly linearizable.

2. Consider the system

ẋ =


−1 0 0 1
0 1 1 0
0 1 1 1
0 0 1 −1

x+


0 0
1 0
1 1
0 0

u

y = (0 0 0 1)x.

(a) Find V ∗. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (8p)

Answer: V ∗ = {x : x3 = x4 = 0}: Ω0 = sp{(0 0 0 1)}, Ω0∩G⊥ = sp{(0 0 0 1)},
and (0 0 0 1)A = (0 0 1 − 1), then Ω1 = sp{(0 0 0 1); (0 0 1 − 1)}. Since
Ω2 = Ω1, we have V ∗ = Ω⊥1 .

(b) Find R∗. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (6p)

Answer: R∗ = {x : x1 = x3 = x4 = 0}: A simple friend is u1 = f1x = 0, u2 =
f2x = −x2, then R∗ =< A+BF |V ∗ ∩ ImB >= V ∗ ∩ ImB.

(c) Can we find a friend F of V ∗, such that A + BF has all the eigenvalues with
negative real parts? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (6p)

Answer: Yes, we can easily find an F to modify all the eigenvalues to −1 for
example (what will happen if a11 is 1 instead?)

3. Consider the system

ẋ =


−2 1 0 0
0 1 1 0
0 1 −1 2
1 0 0 −1

x+


0 0
α 0
0 0
0 1

(u1u2
)

(
y1
y2

)
=

(
0 1 0 0
0 0 1 0

)
x,

where α is a constant.

(a) What are the zeros? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (6p)

Answer: s0 = −2. When α 6= 0, the system has relative degree (1, 2) and the
zero dynamics is ż = −2z. When α = 0, only u2 is active, we can use the
previous case the establish that only s0 = −2 may make the system matrix lose
rank, and this is verified.
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(b) For what α is the noninteracting problem solvable? . . . . . . . . . . . . . . . . . . . . . .(4p)

Answer: α 6= 0, which implies that the system has relative degree.

(c) Now suppose one of the two output sensors is out of order, namely we have
only one output for the system y2 available. What are the zeros now? . . (10p)

Answer: s0 = 1,−2 if α = 0, otherwise there is no zero. When α = 0 the system
is reduced to a SISO system that has relative degree 2. The zero dynamics is
ż1 = −2z1+z2, ż2 = z2. When α 6= 0,only s0 = −2 may make the system matrix
lose rank (from discussion in (a)), and we can verify that the matrix has rank
5 at -2.

4. Consider:

ẋ = Ax+ bu+ pqw

ẇ = Γw

y = cx,

where α is a positive constant, w represents both disturbances and reference output
signals.

A =


0 1 0 0
−1 −2 −4 0
1 0 −1 −4
0 0 1 −2

 b =


0
0
1
0

 p =


0
1
1
0

 ,

and

Γ =

0 1 0
0 α 1
0 0 0

 q =
(
1 0 0

)
c =

(
1 0 0 0

)
.

Some facts you can use: eig(A) = {−0.82±1.8i,−1.68±0.87i}, (A, p) is controllable.

(a) Show the existence of an invariant subspace x = Π(α)w for the system when
u is set to zero (no exact Π is needed) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5p)

Answer: Since A is stable and Γ is antistable, there exists such an invariant
subspace.

(b) Show for almost all values of α, the reduced system

ẇ = Γw

y = cΠ(α)w

is observable, where both Γ and c are defined as above. What is the value of α
that makes the reduced system unobservable? . . . . . . . . . . . . . . . . . . . . . . . . . . . . (8p)

Answer: The reduced system is observable if no eigenvalue of Γ is a transmis-
sion zero of ẋ = Ax + pu, y = cx, since (A, p, c) is minimal. The transmission
zeros are 2 and -1. Therefore, for α = 2, the reduced system is not observable.

(c) For α = 2, solve the full information output regulation problem (find u), where
the tracking error is

e = y − (0 1 0)w.
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Answer: Let u = K(x−Πw) + dw (the letter Γ is already taken) , we can let
K = 0 since A is already stable. In order to find d we need to find Π anyway.
Let Π = (π1;π2;π3;π4). From cΠ − q = 0 we have π1 = q, from π2w = ˙(π1w),
we have π2 = π1Γ. Similarly, from π2Γ = −π1−2π2−4π3 +(1 0 0) we can solve
for π3. Finally we can solve π4 from π4Γ = π3 − 2π4. This Sylvester equation
has a unique solution since Γ does not have any eigenvalue with negative real
part. When Π is solved we can solve d from π3Γ = π1− 3π3− 4π4 + d+ (1 0 0).

One can also first convert the system without w into the normal form with
relative degree 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(7p)

5. Consider in a neighborhood N of the origin

ẋ1 = x2 + sin(x3)

ẋ2 = x41 + x2 + u

ẋ3 = αx31 − sin(x3) + cos(x2)u

y = sin(x2),

where α is a real constant.

(a) Convert the system into the normal form. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (6p)

Answer: Let ξ = sin(x2), z1 = x1, z2 = x3 − sin(x2), then in the normal form
we have

ż1 = x2 + sin(x3)

ż2 = αx31 − sin(x3)− cos(x2)(x
4
1 + x2)

ξ̇ = cos(x2)(x
4
1 + x2 + u)

y = ξ,

(one is encouraged to reexpress the right hand side with new coordinates)

(b) Analyze the stability of the zero dynamics in terms of α. . . . . . . . . . . . . . . . . (4p)

Answer: Since the zero dynamics is

ż1 = sin(z2)

ż2 = αz31 − sin(z2)− z41

By using center manifold theory, where h(z1) ≈ αz31 if α 6= 0 and h(z1) ≈ −z41 if
α = 0, we establish that it is asymptoitcally stable if α < 0; unstable if α ≥ 0.

(c) Design a feedback control to stabilize the nonlinear system for the case when
the zero dynamics is asymptotically stable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4p)

Answer: We can design u by for example let ξ̇ = cos(x2)(x
4
1 + x2 + u) = −ξ.

(d) Is the system without the output exactly linearizable? . . . . . . . . . . . . . . . . . . . (6p)

Answer: No since the linearization is not controllable.


