Geometric Control Theory¹

Lecture notes by Xiaoming Hu and Anders Lindquist in collaboration with Jorge Mari and Janne Sand

2012

Optimization and Systems Theory Royal institute of technology SE-100 44 Stockholm, Sweden

¹This work is partially based on the earlier lecture notes by Lindquist, Mari and Sand.

Contents

Preface	vii
Notations and definitions	ix
Chapter 1. Introduction 1.1. Linear and nonlinear systems 1.2. The geometric approach	$egin{array}{c} 1 \\ 1 \\ 4 \end{array}$
 Chapter 2. Invariant and controlled invariant subspaces 2.1. Invariant subspaces 2.2. Controlled invariant subspaces 2.3. Reachability subspaces 2.4. Maximal reachability subspaces 2.5. Reachability under state constraints 	9 9 10 12 15 19
Chapter 3. The disturbance decoupling problem (DDP) 3.1. Geometric formulation 3.2. Computing \mathcal{V}^* 3.3. Disturbance decoupling, observability, and zeros 3.4. Disturbance decoupling with eigenvalue assignment 3.5. Solution of the DDPP 3.6. Is it necessary that Im $E \subset \mathcal{R}^*$?	21 21 23 25 26 27 29
 Chapter 4. Zeros and zero dynamics 4.1. Zero dynamics for SISO systems 4.2. Zero dynamics of MIMO systems 4.3. Zeros and system inversion 4.4. An illustration of zero dynamics: high gain control¹ 	31 31 33 36 38
Chapter 5. Noninteracting control and tracking 5.1. Noninteracting control 5.2. Tracking with stability	41 41 44
 Chapter 6. Input-output behavior 6.1. State observation 6.2. Output tracking input 6.3. The partial stochastic realization problem 	45 45 46 51
Chapter 7. Output regulation and internal model principle	55

CONTENTS

iv

7.1. Full information output regulation	57
7.2. Error feedback output regulation	58
7.3. Output regulation and zero dynamics	59
Chapter 8. Nonlinear systems	61
8.1. Introduction	61
8.2. Controllability	62
8.3. Stability of nonlinear systems	66
8.4. Steady state response and center manifold	69
8.5. Center Manifold Theory	71
8.6. Zero dynamics and its applications	73
8.7. Disturbance decoupling problem (DDP)	76
8.8. Output regulation	76
8.9. Exact linearization via feedback	77
Chapter 9. Multi-Robotic Systems	79
9.1. Consensus problem	79
9.2. Formation control	82
9.3. Formation control with limited sensor information	85
Appendix A. Numerical aspects in geometric control	89
A.1. Introduction	89
A.2. Representation of linear model	90
A.3. The singular value decomposition	92
A.4. A list of useful MATLAB commands	95
Appendix. Bibliography	101
Appendix. Index	103

Preface

Various versions of the notes have been used for the course "Geometric Control Theory" given at the Royal Institute of Technology (KTH), and its predecessor "Advanced Systems Theory". The first version was written by Anders Lindquist and Janne Sand, and was later revised and extended by Jorge Mari. A major revision and addition was done by Xiaoming Hu in 2002.

I would like to express my gratitude to Dr Ryozo Nagamune and Docent Ulf Jönsson for their careful reading and constructive comments on the 2002 version of the notes.

Some minor changes and updates have been made every year since 2002. In 2006, some new material was added and the title was changed to "Geometric Control Theory"; In 2012 Chapter 9 was rewritten.

Xiaoming Hu October, 2012

Notations and definitions

For easy reference we recall here some notations and definitions. Assume \mathcal{X} and \mathcal{Y} are finite dimensional vector spaces over the real field. Let n be the dimension of \mathcal{X} , which is then isomorphic to \mathbb{R}^n .

(1) Image space. Given a map $A : \mathcal{X} \to \mathcal{Y}$, the image space of A is defined as

Im $A := \{ y \in \mathcal{Y} : y = Ax, \text{ for some } x \in \mathcal{X} \}.$

It is a subspace of \mathcal{Y} . We shall often use the same symbol for the map A as for its matrix representation once bases in \mathcal{X} and \mathcal{Y} have been chosen.

(2) Linear span. Given a vector space \mathcal{V} over the field \mathcal{R} , let $v_1, \cdots, v_m \in \mathcal{V}$. The span of these vectors is

 $span\{v_1,\cdots,v_m\} = \{\alpha_1v_1 + \cdots + \alpha_mv_m | \alpha_1,\cdots,\alpha_m \in \mathcal{R}\}.$

(3) Null space. Given a map $A : \mathcal{X} \to \mathcal{Y}$, the null space, or kernel, of A is defined as

$$\ker A := \{ x \in \mathcal{X} : Ax = 0 \}.$$

It is a subspace of \mathcal{X} .

(4) *Preimage*. Let \mathcal{W} be any set of \mathcal{Y} . The *pre-image* of \mathcal{W} under the map A is

$$A^{-1}\mathcal{W} := \{ x \in \mathcal{X} : Ax \in \mathcal{W} \}.$$

Observe that A need not be invertible, so beware of the distinction between preimage and inverse.

- (5) A-invariant subspace. A subspace \mathcal{V} of \mathcal{X} is A-invariant if $A\mathcal{V} \subseteq \mathcal{V}$.
- (6) Reachable subspace. Given the pair of conformable matrices $A_{n \times n}$ and $B_{n \times k}$, the reachable subspace of (A, B), denoted by $\langle A | \operatorname{Im} B \rangle$, is defined as $\langle A | \operatorname{Im} B \rangle := \operatorname{Im} \Gamma$, where Γ is the reachability matrix $[B A B \dots A^{n-1} B]$. This is an $n \times nk$ matrix. The reachable subspace is A-invariant.
- (7) $\langle A | \operatorname{Im} E \rangle$. The minimal A-invariant subspace that contains the subspace $\operatorname{Im} E$ is denoted by $\langle A | \operatorname{Im} E \rangle$.

NOTATIONS AND DEFINITIONS

(8) Reachability subspace. Given a matrix pair (A, B), a subspace \mathcal{R} is called a *reachability subspace* if there are matrices F and G such that

$$\mathcal{R} = \langle A + BF | \operatorname{Im} BG \rangle.$$

(9) Unobservable subspace. Given the matrix pair (C, A), the unobservable subspace is defined as ker Ω , where Ω is the observability matrix

$$\begin{array}{c} C\\ CA\\ \vdots\\ CA^{n-1} \end{array}$$

The unobservable subspace is A-invariant.

- (10) The map A is *injective* if $Ax_1 = Ax_2$ implies $x_1 = x_2$.
- (11) If $A : \mathcal{X} \to \mathcal{Y}$ and $\mathcal{V} \subseteq \mathcal{X}$, the *restriction* of A to \mathcal{V} is denoted by $A|_{\mathcal{V}}$.
- (12) Given the two finite-dimensional subspaces \mathcal{V} and \mathcal{W} , the vector sum is defined as

$$\mathcal{V} + \mathcal{W} := \{ v + w : v \in \mathcal{V}, w \in \mathcal{W} \}.$$

If \mathcal{V} and \mathcal{W} are linearly independent we write the sum as $\mathcal{V} \oplus \mathcal{W}$. Note that in these notes \oplus does *not* denote orthogonal vector sum!

(13) Hypersurface. Suppose N is an open set in \mathbb{R}^n . The set M is defined as

$$M = \{x \in N : \lambda_i(x) = 0, i = 1, \dots, n - m\}$$

where λ_i are smooth functions.

If rank
$$\begin{bmatrix} \frac{\partial \partial x}{\partial x} \\ \vdots \\ \frac{\partial \lambda_{n-m}}{\partial x} \end{bmatrix} = n - m \ \forall x \in M$$
, then M is a (hyper)surface of dimension m .

(14) Lie derivative. In local coordinates, Lie derivative is represented by

$$L_f \lambda := \sum_{i=1}^n \frac{\partial \lambda}{\partial x_i} f_i,$$

where f is a vector and λ is a scalar function.

(15) Lie bracket. Lie bracket of the two vector fields f and g is defined according to the rule:

$$[f,g](\lambda) := L_f L_g \lambda - L_g L_f \lambda.$$

x

In local coordinates the expression of [f,g] is given as $\partial q \qquad \partial f$

$$\frac{\partial g}{\partial x}f - \frac{\partial f}{\partial x}g.$$