SF2842: Geometric Control Theory

Homework 1

Due February 11, 16:50pm, 2016
You may use $\min (5,($ your score $) / 4)$ as bonus credit on the exam

1. Consider the system

$$
\begin{aligned}
\dot{x} & =\left(\begin{array}{cccc}
-2 & 0 & 0 & -1 \\
0 & -2 & 1 & 2 \\
1 & 0 & 2 & 1 \\
1 & 0 & 0 & 0
\end{array}\right) x+\left(\begin{array}{cc}
1 & 0 \\
-1 & 0 \\
-1 & 1 \\
1 & 1
\end{array}\right) u \\
y & =\left(\begin{array}{lll}
1 & 1 & 0
\end{array}\right) x .
\end{aligned}
$$

(a) Compute \mathcal{V}^{*} and express all friends F of \mathcal{V}^{*}

Solution: $V^{*}=\operatorname{span}\left\{\left(\begin{array}{c}1 \\ -1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{c}0 \\ 0 \\ 1 \\ -1\end{array}\right)\right\}, \mathcal{F}\left(V^{*}\right)=\left\{F \in R^{2 \times 4} \mid f_{22}-f_{21}=1, f_{24}-\right.$ $\left.f_{23}=\frac{1}{2}\right\}$
(b) Compute \mathcal{R}^{*} that is contained in $k e r C$.

Solution: $R^{*}=\operatorname{span}\left\{\left(\begin{array}{c}1 \\ -1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{c}0 \\ 0 \\ 1 \\ -1\end{array}\right)\right\}=V^{*}$
(c) Can we find a friend F of \mathcal{V}^{*} such that $(A+B F)$ has all eigenvalues with negative real parts?
(3p)
Solution: Yes, since (A, B) is reachable and $E=0 \in \operatorname{Im} R^{*}$. According to the theorem 4.3 in the compendium, the pole assignment problem can always be solved.
2. Consider

$$
\begin{aligned}
\dot{x} & =A x+B u \\
y & =C x
\end{aligned}
$$

where $x \in R^{n}, u \in R^{m}$ and $y \in R^{p}$.
(a) Show the controllable subspace is ($\mathrm{A}+\mathrm{BF}$)-invariant for any F.

Solution: For any vector $v \in R=\langle A \mid \operatorname{Im} B\rangle$ there exist $\alpha_{1}, \cdots, \alpha_{n}$ and v_{1}, \cdots, v_{n} such that

$$
v=\sum_{i=1}^{n} \alpha_{i} A^{i-1} B v_{i} .
$$

For any F, we have

$$
(A+B F) v=\sum_{i=1}^{n} \alpha_{i}\left(A^{i} B+B F A^{i-1} B\right) v_{i} \in R
$$

since $A^{i} B v_{i} \in R$ and $B F A^{i-1} B v_{i} \in \operatorname{Im} B \subset R$, for $i=1,2, \cdots, n$. Hence, R is $(A+B F)$-invariant for any F.
(b) Assume further that $C A^{k} B \neq 0$, for some $k<n$, and (C, A) is not observable. Show the unobservable subspace $\operatorname{ker} \Omega$ is not (A +BF)-invariant for all F. (3p) Solution: Suppose ker Ω is $(A+B F)$-invariant for any F, and v is a nonzero vector in ker Ω. We know that $(A+B F) v \in \operatorname{ker} \Omega$, which is equivalent to $\Omega(A+B F) v=0$. By the definition of Ω, we get $C A^{i}(A+B F) v=0$ for $i=$ $0,1, \cdots, n-1 . v \in \operatorname{ker} \Omega$ means that $C A^{i} v=0$ for $i=0,1 \cdots, n$, which gives $C A^{i} B F v=0$ for $i=0,1 \cdots, n-1$. Especially, we have $C A^{k} B F v=0$. Since $C A^{k} B \neq 0$ and $v \neq 0$, we can always find a matrix F such that $C A^{k} B F v \neq 0$, which makes a contradiction.
(c) Suppose (C, A) is observable and the dimension of \mathcal{V}^{*} is greater or equal to one. Show it is not possible to express a friend F of \mathcal{V}^{*} as $F=L C$, namely it is not possible to use output feedback to make \mathcal{V}^{*} invariant. Solution: Suppose $F=L C$ is a friend of V^{*} and v is a nonzero vector in V^{*}. Then we have $(A+B L C) v \in V^{*} \subset \operatorname{ker} C$. Since $v \in V^{*} \subset \operatorname{ker} C, C v=0$. So we get $A v \in V^{*}$. We can continue the similar derivation to get $A^{i} v \in V^{*} \subset$ ker C, for $i=0,1, \cdots, n-1$. This implies v is a nonzero vector in $\operatorname{ker} \Omega$, which contradicts the assumption that (C, A) is observable.
3. Consider

$$
\begin{aligned}
\dot{x}_{1} & =-x_{1}+x_{2}+x_{3}+x_{4} \\
\dot{x}_{2} & =-x_{1}-\alpha u \\
\dot{x}_{3} & =-x_{2}-2 x_{3}+u \\
\dot{x}_{4} & =x_{2}-u \\
y & =x_{3}+x_{4},
\end{aligned}
$$

where α is a constant.
(a) Convert the system into the normal form and compute the zero dynamics. (2p) Solution: Normal form:

$$
\begin{aligned}
\left(\begin{array}{c}
\dot{z}_{1} \\
\dot{z}_{2} \\
\dot{\xi}_{1} \\
\dot{\xi}_{2}
\end{array}\right) & =\left(\begin{array}{cccc}
-1 & 1 & 1 & \frac{\alpha}{2} \\
-1 & -\alpha & 0 & \alpha-\frac{\alpha^{2}}{2} \\
0 & 0 & 0 & 1 \\
0 & 4 & 0 & 2(\alpha-1)
\end{array}\right)\left(\begin{array}{l}
z_{1} \\
z_{2} \\
\xi_{1} \\
\xi_{2}
\end{array}\right)+\left(\begin{array}{c}
0 \\
0 \\
0 \\
-2
\end{array}\right) u \\
y & =\xi_{1},
\end{aligned}
$$

where $z_{1}=x_{1}, z_{2}=x_{2}+\alpha x_{3}, \xi_{1}=x_{3}+x_{4}$, and $\xi_{2}=-2 x_{3}$.
Zero dynamics:

$$
\dot{z}=N z, \text { where } N=\left(\begin{array}{cc}
-1 & 1 \tag{2p}\\
-1 & -\alpha
\end{array}\right) .
$$

(b) Computer \mathcal{V}^{*} and \mathcal{R}^{*} in $\operatorname{ker} C .$.

Solution: $V^{*}=\operatorname{spam}\left\{\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right)\right\}, R^{*}=\{0\}$.
(c) For what α we can find a friend f of \mathcal{V}^{*} such that $(A+b f)$ is a stable matrix? (2p)
Solution: It is only when the zero dynamics is stable can we stabilize the system with a friend of V^{*}, which is when $\alpha>-1$.

