KTH Matematik

SF2842: Geometric Control Theory

Homework 2

Due March 2, 16:50pm, 2016
You may use $\min (5,($ your score $) / 4)$ as bonus credit on the exam

1. Consider the system

$$
\begin{aligned}
\dot{x} & =\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \\
-1 & -1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0
\end{array}\right) x+\left(\begin{array}{ll}
0 & 0 \\
1 & 0 \\
0 & a \\
1 & 1
\end{array}\right) u \\
y & =\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0
\end{array}\right) x,
\end{aligned}
$$

where a is a constant.
(a) For what a does the system have relative degree? [1p]

Solution: For $a \neq 1$ the system has a relative degree $(2,1)$.
(b) When the system has relative degree, comvert the system into the normal form. [3p]

Solution: Let $\xi_{1}^{1}=x_{1}, \xi_{1}^{2}=x_{4}, \xi_{2}^{1}=x_{2}+x_{3}$, and $z=a x_{2}+x_{3}-a x_{4}$. The system can be transformed into its normal form:

$$
\begin{aligned}
\dot{z} & =-\frac{a}{a-1} z+(1-a) \xi_{1}^{1}-\frac{a^{2}}{a-1} \xi_{1}^{2}+\frac{2 a-a^{2}}{a-1} \xi_{2}^{1} \\
\dot{\xi}_{1}^{1} & =\xi_{1}^{2} \\
\dot{\xi}_{1}^{2} & =\xi_{2}^{1}+u_{1}+u_{2} \\
\dot{\xi}_{2}^{1} & =-\frac{1}{a-1} z-\frac{a}{a-1} \xi_{1}^{2}+\frac{1}{a-1} \xi_{2}^{1}+u_{1}+a u_{2} \\
y_{1} & =\xi_{1}^{1} \\
y_{2} & =\xi_{2}^{1} .
\end{aligned}
$$

(c) Use the Rosenbrock matrix to verify your computation of the transmission zeros from (b). [3p]

Solution: The system has a transmission zero $-\frac{a}{a-1}$ by checking the system matrix, when $a \neq 1$.
2. Consider the system

$$
\begin{aligned}
\dot{x}_{1} & =x_{2} \\
\dot{x}_{2} & =x_{3} \\
\dot{x}_{3} & =-x_{1}-3 x_{2}-3 x_{3}+u \\
\dot{w}_{1} & =w_{2} \\
\dot{w}_{2} & =-w_{1} \\
u & =w_{1} \\
y & =c_{1} x_{1}+c_{2} x_{2}+x_{3},
\end{aligned}
$$

where c_{1}, c_{2} are constant and $c_{1}-c_{2}+1 \neq 0$.
(a) Compute the invariant subspace $x=\Pi w$. [2p]

Solution: $\Pi=\frac{1}{4}\left(\begin{array}{cc}-1 & -1 \\ 1 & -1 \\ 1 & 1\end{array}\right)$.
(b) For what value(s) of c_{1}, c_{2} is the above system (consisting of x and w) unobservable? Explain why. [2p]

Solution: The original system with x is always observable since $c_{1}-c_{2}+1 \neq 0$. Only when $c_{1}=1, c_{2}=0$, the eigenvalue of S coincides with the transmission zero of the (A, B, C) system, which makes the big system unobservable.
(c) Design c_{1}, c_{2} such that $y(t)=u(t)$ in the steady state. [2p]

Solution: $c_{1}=-1, c_{2}=2$.
3. Consider:

$$
\begin{aligned}
\dot{x}_{1} & =x_{2}+x_{4} \\
\dot{x}_{2} & =x_{2}+u_{1} \\
\dot{x}_{3} & =-2 x_{3}+w_{3}+u_{2} \\
\dot{x}_{4} & =x_{1}-\alpha x_{3}-x_{4}+u_{2} \\
\dot{w}_{1} & =w_{2} \\
\dot{w}_{2} & =-w_{1} \\
\dot{w}_{3} & =0 \\
e_{1} & =x_{1}-2 w_{1} \\
e_{2} & =x_{4}-3 w_{2}
\end{aligned}
$$

(a) For what α is the full information output regulation problem solvable? [2p]

Solution: When $\alpha \neq 2$.
(b) For what α is the error feedback output regulation solvable? [2p]

Solution: When $\alpha \neq 2$. Note that when $\alpha=0$, the pair $\left(\left(\begin{array}{ll}C & -Q\end{array}\right),\left(\begin{array}{cc}A & P \\ 0 & S\end{array}\right)\right)$ is not detectable. However, the error feedback output regulation is still achievable due to the structure of the system.
(c) For $\alpha=1$, solve the the full information output regulation problem. [3p]

Solution: The feedback control is $u=\Gamma w+K(x-\Pi w)$, where

$$
\Gamma=\left(\begin{array}{ccc}
1 & 1 & 0 \\
-6 & 7 & 1
\end{array}\right) \text {, and } \Pi=\left(\begin{array}{ccc}
2 & 0 & 0 \\
0 & -1 & 0 \\
-1 & 4 & 1 \\
0 & 3 & 0
\end{array}\right) .
$$

and K is chosen such that $A+B K$ is stable.

