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Overview of Discrete Time Optimal Control Methods

MPC

Finite time horizon Infinite time horizon

Dynamic programming Dynamic programmingNonlinear optimization

+ Controls transient response
+ Sufficient condition
+ Feedback solution + Exists efficient algorithms

+ State and control constraints
− Open loop control
− Necessary condition

+ Feedback solution
+ Sufficient condition+ Controls transient response

    handle
− State constraints hard to 
− Hard to compute

+ State and control constraints

− Can be expensive to compute

− No regulation

+ Regulation + (transient
response)

− No regulation
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Model Predictive Control

Process

Optimization
ut

xt

� The idea behind MPC is to use an optimization algorithm as

controller.� The optimization is done based on predicted state variables.� The prediction is done based on a model which is the reason for the

term “model predictive control”
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The Algorithm

1. Measure xt|t := xt.

2. Determine U∗
t = (u∗

t|t, u
∗
t+1|t, . . . , u

∗
t+N−1|t) by solving

min
N−1
∑

k=0

f0(xt+k|t, ut+k|t) subj. to















xt+k+1|t = f(xt+k|t, ut+k|t),

xt+k|t ∈ X, ut+k|t ∈ U

xt|t = xt

3. Apply ut := u∗
t|t

4. Let t := t + 1 and go to 1.

xt+k+1|t = f(xt+k|t, ut+k|t) is the predicted state given xt|t.
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Properties of MPC

(+) Feedback solution

(+) Can handle state constraints and control constraints

(+) May consider mixed continuous/discrete variables (Hybrid control)

(−) Stability and feasibility cannot be guaranteed in general. However,

MPC gives closed loop stability under certain reasonable

assumptions.

(−) Computional complexity may be severe in general. However, MPC is

tractable in many applications.

– Power systems and power electronics

– Process control

– Active suspension

6 MPC

Online Optimization Versus Explicit MPC

1. Online optimization: Solve on-line in run-time the optimization

minUt
J(xt|t, Ut), where

Ut =(ut|t, ut+1|t, . . . , ut+N−1|t)

J(xt|t, Ut) =
N−1
∑

k=0

f0(xt+k|t, ut+k|t)

subj. to







xt+k+1|t = f(xt+k|t, ut+k|t),

xt+k|t ∈ X, ut+k|t ∈ U

2. Find explicit solution

U∗
t = (µ(0, xt|t), . . . , µ(N − 1, xt+N−1|t)) = argminUt

J(xt|t, Ut)

and use u∗
t|t = µ(xt|t) := µ(0, xt|t) as state feedback function.
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� The explicit solution is possible to compute in case of

1. Linear cost, linear dynamics, and linear constraints.

2. Quadratic cost, linear dynamics, and linear constraints (harder)� The optimal solution is a piecewise linear map or look-up table.
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Two Tractable Cases

1. Linear dynamics and quadratic cost

min
N−1
∑

k=0

xT
t+k|tQxt+k|t + uT

t+k|tRut+k|t

subj. to







xt+k+1|t = Axt+k|t + But+k|t,

xt+k|t ∈ X, ut+k|t ∈ U

where Q ≥ 0, R > 0, X = {x : −1 ≤ Cx ≤ 1}, U = {α ≤ u ≤ β}.� Solved using quadratic programming

– ETH slides (Löfberg et. al.)
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2. Linear dynamics and linear cost

min
N−1
∑

k=0

‖Qxt+k|t‖p + ‖Rut+k|t‖p

subj. to







xt+k+1|t = Axt+k|t + But+k|t,

xt+k|t ∈ X, ut+k|t ∈ U

where p = 1 or p = ∞, i.e. if y =
[

y1 y2 . . . yn

]T

then

(a) ‖y‖1 =
∑n

k=1
|yk|

(b) ‖y‖∞ = maxk=1,...,n |yk|� Solution can be obtained using linear programming

– ETH slides (Löfberg et. al.)
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Basic Stability Result

Let

Ut =
[

ut|t, ut+1|t, . . . , ut+N−1|t

]

xt|t, Ut) =
N−1
∑

k=0

f0(xt+k|t, ut+k|t) subj. to















xt+k+1|t = f(xt+k|t, ut+k|t),

xt+k|t ∈ X, ut+k|t ∈ U

xt+N |t = 0

Then the MPC algorithm can be formulated as

1. Measure xt|t := xt.

2. Let U∗
t =

[

u∗
t|t, u

∗
t+1|t, . . . , u

∗
t+N−1|t

]

= minUt
J(xt|t, Ut)

3. Apply ut := u∗
t|t

4. Let t := t + 1 and go to 1.
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Theorem 1. Suppose

(i) f0(0, 0) = 0 and there exists ǫ > 0 such that

f0(x, u) ≥ ǫ(‖x‖2 + ‖u‖2)

(ii) f(0, 0) = 0

(iii) 0 ∈ X and 0 ∈ U

(iv) minUt
J(x0|0, Ut) < ∞ (initial feasibility)

then the MPC algorithm on the previous slide gives a feasible and

convergent closed loop trajectory (stability) (xt, ut) → (0, 0) as t → ∞� For a proof see the MPC slides (Löfberg et. al.).� For an example see the hand-out on MPC problems.
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Example

Suppose

J(xt|t, Ut) =
1

∑

k=0

xT
t+k|tQxt+k|t + u2

t+k|t

subject to















xt+k+1|t = Axt+k|t + But+k|t

−1 ≤ Cxt+k|t ≤ 1, k = 0, 1

xt+2|t = 0, −1 ≤ ut+k|t ≤ 1, k = 0, 1

where

A =





1 1

0 1



 , B =





0

1



 , Q =





1 0

0 1



 , C =
[

1 1
]

Determine the stability region.
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Stability Region

In a separate handout we show that the stability region is

X0 = {x : −1 ≤ x1 + x2 ≤ 1;−1 ≤ −2x2 − x1 ≤ 2}
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