
Exam May 27 2014 in SF2852 Optimal Control.

Examiner: Johan Karlsson, tel. 790 84 40.

Allowed books: The formula sheet and β mathematics handbook.

Solution methods: All conclusions should be properly motivated.

Note! Your personal number must be stated on the cover sheet. Number
your pages and write your name on each sheet that you turn in!

Preliminary grades (Credit = exam credit + bonus from homeworks):
23-24 credits give grade Fx (contact examiner asap for further info), 25-27
credits give grade E, 28-32 credits give grade D, 33-38 credits give grade C,
39-44 credits give grade B, and 45 or more credits give grade A.

1. Let

T = Temperature of an object

P = Power of a heating source

We assume that the temperature satisfies

Ṫ = P − T, T (0) = 0

Find the optimal power supply 0 ≤ P (t) ≤ 2 such that T (1) = 1 and∫ 1

0
P (t)dt

is minimized. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (10p)

2. Determine the optimal control for the following two problems. Note
that in the second problem time is also a free variable.

(a)

min
u(·)

1

2

∫ T

0
(1 + (1 + t)u(t)2)dt, subj. to


ẋ(t) = u(t),

x(0) = x0

x(T ) = 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5p)

(b)

min
u(·),T≥0

1

2

∫ T

0
(1 + (1 + t)u(t)2)dt, subj. to


ẋ(t) = u(t),

x(0) = x0

x(T ) = 0, T ≥ 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5p)
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3. Consider the following shortest path problem

minΣ5
k=0f0(xk, uk) subj. to


xk+1 = xk + uk
x0 = (0, 0)
x6 = (3, 3)
uk ∈ {(1, 0), (0, 1)}

which corresponds to computing the shortest path from the node (0, 0)
to node (3, 3) in the graph in Figure 1.

• The state space of the system are the nodes (k, l) k, l = 0, 1, 2, 3
in Figure 1.

• The costs f0(xk, uk) are indicated on the edges in Figure 1.

• The control u = (1, 0) means “go down” in the graph, and the
control u = (0, 1) means “go right” in the graph. If you reach
either of the boundaries (the nodes (k, 3) and (3, l)) then you
have only one feasible control choice left.

• Note that the terminal state constraint simplifies the calculations
further.

(a) Formulate the problem as a discrete time optimal control problem
on the following form

minφ(xN ) + ΣN−1
k=0 f0(xk, uk) subj. to


xk+1 = f(xk, uk)
x0 given
uk ∈ U(xk)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5p)

(b) Solve the problem using dynamic programming. . . . . . . . . . . . (5p)

Remark: Note that here as well as in all dynamic programing ap-
proaches you create solutions to the whole family of similar problems
having different initial states. Note also that the ”backward” direction
of solving the problem by dynamic programming gives a time complex-
ity of n2 compared to 22n for an exhaustive search (n being the side
of the square).
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4. Consider the linear quadratic control problem

V (x0) = min
uk,k=0,...,N−1

xTNQ0xN +

N−1∑
k=0

(xTkQxk + uTkRuk)

subject to xk+1 = Axk +Buk, x(0) = x0,

where Q0, Q, and R are symmetric positive definite matrices.

(a) Show that the optimal cost is V (x0) = xT0 P0x0, where P0 is de-
termined by the discrete-time Ricatti equation:

PN = Q0,

Pk = Q+AT (Pk+1 − Pk+1B(R+BTPk+1B)−1BTPk+1)A,

for k = N − 1, N − 2, . . . , 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (7p)

(b) Determine the optimal feedback u(x). . . . . . . . . . . . . . . . . . . . . . (3p)

5. Consider the minimum time problem

min T subject to


ẋ = −x+ u, x(0) = x0, x(T ) = 0
ẏ = u, y(0) = y0, y(T ) = 0
|u(t)| ≤ 1.

(1)

• (a) Show that the optimal control in bang-bang with at most one
switch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3p)

• (b) Determine the set from which the [0, 0]T could be reached
without any switch (i.e., the switching curve). . . . . . . . . . . . . . (3p)

• (c) Plot the phase diagram and determine the optimal feedback
law. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4p)

Solutions

1. The optimal control problem becomes

min

∫ 1

0
P (t)dt subj. to

{
Ṫ = P − T, T (0) = 0, T (1) = 1

0 ≤ P ≤ 2

The Hamiltonian becomes

H(T, P, λ) = P + λ(P − T )

Pointwise minimization gives

P ∗ = argmin0≤P≤2P + λ(P − T ) =

{
0, σ(t) > 0

2, σ(t) < 0
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where σ(t) = 1 + λ(t). The adjoint equation

λ̇ = λ,

has the solution λ(t) = etλ0 and thus σ(t) = 1 + etλ0. If λ0 > 0 then
σ(t) > 0 for all t which is impossible. For λ0 < 0 we get

P ∗ =

{
0, 0 ≤ t ≤ t1
2, t1 ≤ t ≤ 1

where t1 is determined by the condition T (1) = 1, i.e.,

T (1) =

∫ 1

t1

e−(1−s)2ds = (1− e−(1−t1))2 = 1

which gives t1 = 1− ln2.

2. (a) Since, T is fixed the problem simplifies to

min
u(·)

1

2

∫ T

0
(1 + t)u2dt subj. to

{
ẋ = u, x(0) = x0

x(tf ) = 0

Let H(t, x, u, λ) = 1
2(1 + t)u2 +λu. Pointwise minimization gives

µ(t, x, λ) = argminH(t, x, λ) = − λ

1 + t

This gives the TPBVP

ẋ = −λ, x(0) = x0, x(tf ) = 0

λ̇ = 0, λ(tf ) = free
(2)

This gives uopt = −λ0/(1 + t) where λ0 is constant and can be
determined from

0 = x(tf ) = x0 −
∫ T

0

λ0
1 + t

= x0 − λ0 log(1 + T )

⇒ λ0 = x0/ log(1 + T ).

Hence, uopt(t) = −x0/(1 + t)/ log(1 + T ).

(b) The Hamiltonian becomes H(t, x, u, λ) = 1
2(1 + (1 + t)u2) + λu.

Pointwise minimization and the Hamiltonian system is the same
as in (2). To find the optimal transition time we either optimize
the cost or use the condition on H∗(t) = H(t, x∗, µ(t, x∗, λ), λ) in
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PMP. Here we use that H(T, x∗(T ), µ(T, x∗(T ), λ(T )), λ(T )) = 0.
This gives

0 = H(T, x∗(T ), µ(T, x∗(T ), λ(T )), λ(T ))

=
1

2
(1 + (1 + T )u2opt(T )) + λ(T )uopt(T )

=
1

2
(1− x20/(1 + T )/ log(1 + T )2),

hence the optimal T is given by x0 = (1 + T ∗) log(1 + T ∗)2. The
optimal control is then

uopt = uopt(t) = −x0/(1 + t)/ log(1 + T ∗).

3. This problem is solved in a similar way as the shortest path problem
in the lecture notes. Note that the constraint x6 = (3, 3) has to be
represented using either the feasible control set (U(xk)) or using the
terminal cost (φ(x6)). The optimal cost (shortest path) is 16.

4. See Example 7 on page 23-24 in the course book.

5. (a) The hamiltonian is given by H(x, u, λ) = 1 + λT (Ax+ bu) where

A =

(
−1 0
0 0

)
, b =

(
0
1

)
.

Pointwise minimization gives

µ(t, x, λ) = argminH(t, x, λ) = −sign(λ1 + λ2), for λ1 + λ2 6= 0.

The adjoin system is

λ = −∂H
∂x

= −ATλ =

(
1 0
0 0

)(
λ1
λ2

)
, (3)

hence λ1 = etc1 and λ2 = c2 where c1, c2 are constants. Since
the Hamiltonian is zero along the optimal path, both c1 = c2 = 0
is impossible. Therefore λ1 + λ2 = etc1 + c2 is either strictly
increasing, strictly decreasing, or non-zero constant, and hence
the control is bang-bang with at most one switch.

(b) Consider the system trajectory when u = 1. Then

0 = y(t) = t+ y(0)

0 = x(t) = e−tx(0) +

∫ t

0
et−τdτ = e−t(x(0)− 1) + 1
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whenever y(0) = −t and x(0) = 1 − et. Similarly, the control
u = −1 takes the system to 0 when

0 = y(t) = −t+ y(0)

0 = x(t) = e−tx(0)−
∫ t

0
et−τdτ = e−t(x(0) + 1) + 1

when y(0) = t and x(0) = et − 1. The switching curve is thus
given by (x, y) = (sgn(t)(e|t| − 1), t).

(c) Draw the phase diagram and note that the control u = 1 must
be used when the state on the right side of the switching curve
and the control u = −1 is used when the state is on the left side
of the switching curve. That is,

u∗(x, y) =


−1 when x(t) < sign(y)(e|y| − 1)

−sign(y) when x(t) = sign(y)(e|y| − 1)

1 when x(t) > sign(y)(e|y| − 1).
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Figure 1: The discrete optimal control problem. The small font numbers
being f0(xk, uk) and the large ones being states (e.g. (0,0))
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